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Chapter 1

General introduction

As concluded in [Boissier et al., 2015], multiple autonomous agents within
a system may be heterogeneous in terms of goals and ethics. Thus it is
the first importance to allow the agents to justify their decisions in order
to be judged as ethical (or not) by other agents. Consequently an ethical
competent autonomous artificial agent should also be able: (1) at the micro-
level to represent its ethics and justify its decisions, to represent the ethics
of another agent and to verify that this agent’s behavior follows its ethics,
to judge the ethics of the other agent through a comparison mechanism, and
to take into account this judgment in its own decisions; (2) at the macro-
level to build a collective ethics, to identify and be able to judge a collective
ethics, to be able to judge other agents through the collective ethics and to
make an arbitration between its own ethics and the collective ethics.

To deal with ethical competent autonomous artificial agents, we inves-
tigated several models of supervision, judgement and practical reasoning
in [Boissier et al., 2017]. One of these models – called Ethical Judgement
Process (or EJP) – is particulary interesting as it is a BDI architecture
which uses three important notions: values, moral rules and ethical prin-
ciples (ordered with respect to a lexicographic preference relationship). In
EJP, values describe partial states or actions in a given context. Moral
rules describe if a state or an action or their abstract descriptions through
values are moral or immoral. Ethical principles describe how beliefs about
capability, desirability and morality of actions interact to give a right-full
action. As ethical principles are ordered through a lexicographic preference
relationship, an ethical agent is an agent which intend to execute the action
which rightfull according the most prefered ethical principle.

However, several open questions remains. Firstly, ethical principles are
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still abstract functions that must be instanciated. Secondly, while EJP
allows to judge the agent’s own behavior, the multi-agent dimension must
be taken into account in order to be able (1) to judge the other agents, (2) to
judge how the individual agents should behave regarding a collective. Thus,
in this report, we address the question of ethical decision-making under
the perspective of collaboration. We consider agents that must decide how
they will cooperate with other agents according to values, moral rules and
ethical principles. In this sense, we propose a way to evaluation the others’
behavior, and to define values, moral rules and ethical principles in order
to constrain the cooperation process. Such mechanisms are illustrated on
coalitional games.
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Chapter 2

Ethical collective
decision-making

In a multi-agent system, constraining the behavior of an agent may allow to
act in an ethical way inside a collective (e.g. normative systems). However,
the same agent can be helpless when it must take the ethics of the other
agents into account. For instance, a trading agent can be able to take into
account the principles of responsible asset management but can be unable
to identify if the others follow the same principles. Moreover, it can also
be unable to collaborate with others while insuring their joint decision will
respect some values and principles. Hence, taking the multi-agent dimension
into account needs to investigate how collective ethics, ethical collective, and
ethical joint decision-making can be implemented.

We first provide in Section 2.1 definitions of individual and collective
ethics. Section 2.2 is devoted to an overview of ethical issues related to multi-
agent collective. Then we focus on collective decision-making in Section 2.3
and provide some though on the relationship between values and cooperation
mechanisms. Finally, we synthesize in Section 2.3.3 the main operational
needs that must be dealt with in order to build ethical collectives.

2.1 Reminders and definitions

This section propose a definition of individual and collective ethics, in order
to highlight the main issues in multi-agent systems.
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2.1.1 Individual ethics

We firstly consider an individual ethical decision-making process inspired
from the framework proposed in [Berreby et al., 2015, Cointe et al., 2016a,
Berreby et al., 2017,Boissier et al., 2017]. In such decision-making process,
individual ethics is defined as follows:

Definition 2.1 (Individual ethics) Individual ethics is the ethics embed-
ded in a given autonomous agent – defined by a theory of the good and a
theory of the right – which allows the agent to judge the moral and the ethics
of a given behavior in a given situation.

Moral
rules

Moral
values

Theories
of the Good

Ethical
principles

Ethical
preferences

Theories
of the Right

Ethical

judgement
Intentions

Situation

awareness
Beliefs

Goals

Figure 2.1: Architecture of ethical agents, inspired by [Boissier et al., 2017]

Let us consider a Belief-Desire-Intentions (BDI) architecture which al-
lows symbolic representations of beliefs on the world states and goals in order
to both deduce intentions and select actions to execute [Rao and Georgeff,
1995]. Individual ethics extends such architecture as shown in Figure 2.1.
The theory of the good consists in moral values and moral rules which as-
sociates a degree of good or bad to a combination of actions, beliefs or
desires. The theory of the right consists in a set of ethical principles (e.g.
least bad consequence principle or doctrine of double effect) and a set of
preferences over those principles, which describe a way to combine actions,
desires and morals to produce intentions. Usage and implementation of such
an architecture are detailled in [Cointe et al., 2016a, Cointe et al., 2016b].
Implementations of several ethical principles are detailled in [Berreby et al.,
2015,Berreby et al., 2017].
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2.1.2 Collective ethics

When agents need to interact in order to share resources or realize complex
tasks, ethics must be taken into account to decide with whom to cooperate,
and how to cooperate. For instance, it may be considered as unethical to
delegate a task to an agent known for being itself unethical. Moreover,
agents can also participate to organisations (see [Boissier et al., 2015] for
more details) which can also be embedded with ethics. For instance, it must
be reasonable for an emergency robot team to comply with a deontological
medecine code. This is why, we need to consider the notion of collective
ethics.

Definition 2.2 (Collective ethics) Collective ethics is a set of moral rules
and ethical principles which guides the selection of joint actions when agents
interact within dynamic (e.g. coalitions) or stable (e.g. organisations) struc-
tures.

oi oj

ai aj

agent

role transmission
interaction
organisation

role

Figure 2.2: Interactions and role adoptions within organisations

Let us remark that collective ethics can either be defined explicitely
within an organization, or be defined by merging the agents’ individual
ethics. Let us also remark that a merging mechanism may be either ex-
plicitely defined, or may emerge from the interactions. Hence, collective
ethics raise new ethical issues. For instance, how individual agents can take
collective ethics into account when they adopt a role (see dashed arrows in
Figure 2.2)? How different ethics can coexist when their bearer (agents or
organization) interacts, even in presence of inconsistencies (see plain arrows
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in Figure 2.2)? At a higher lever, as collectives can be abstracted in a special
case of agents, how collectives can interact with other collectives?

2.1.3 An illustrative example

In order to illustrate the issues presented in Section 2.2, let us consider a
toy multi-agent system where agents own money. Each agent can be in one
of the three (exclusive) states: POOR, RICH or NEUTRAL. Each agent has the
following action model:

• STEAL(A) which takes a part of the agent A’s money,

• GIVE(A) which gives some money to the A,

• TAX(A) which claims a part of the agent A’s money,

• COURT(A) which tries to earn favors from the agent A.

Let us consider an agent RobinHood with the following moral rules:

• M1. POOR(A) → IMMORAL(TAX(A))

• M2. POOR(A) → IMMORAL(STEAL(A))

• M3. POOR(A) → MORAL(GIVE(A))

• M4. ¬ POOR(A) → ¬ MORAL(GIVE(A))

The three first rules define moral forbidden (M1 and M2) and moral
duties (M3) by associating beliefs (POOR(A)), actions (TAX(A), GIVE(A),

STEAL(A)) and moral valuations (MORAL(X) ou IMMORAL(X)). A moral val-
uation is an element of a finite set of ordered valuations (e.g. { IMMORAL,

AMORAL, MORAL }). The immorality of wealth is given by associating a belief
(RICH(A)) to a negative moral valuation. RobinHood has also desires:

• D1. > → DESIRE(COURT(Marian))

• D2. POOR(A) → DESIRE(GIVE(A))

Let us assume RobinHood has a single ethical principle: an action is
rightfull if, and only if, it is realizable, desired by the agent and considered
as moral by at least a moral rule. Let us consider a situation where the two
single possible actions are:

1. A1. GIVE(Peasan) knowing POOR(Peasan)
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2. A2. COURT(Marian)

In this context, the ethical decision is A1 as it satisfies desire D2 and is
evaluated as moral by rume M3. Action A2 is not in contradiction with any
desire or moral rules but is not evaluated as moral by a moral rule. Hence,
A2 is unethical knowning A1 is possible. Let us remark that, if A1 is not
possible, then A2 becomes an ethical action. Let us also remark that, if
RobinHood has not the desire D2, then it faces a dilemme as A1 does not
satisfy a desire, and as A2 is not evaluated as moral by a moral rule. It
is the same if the belief POOR(Peasan) is not perceived by RobinHood. To
deal with dilemma, we can consider a set of ethical principles rather than
a sigle one. However, such questions are beyond the scope of this section.
More details are given in [Cointe et al., 2016a].

2.2 Interactions between ethics

In order to both deal with individual and collective ethics, agents need to
be able to represent the other agents’ ethics. Hence, agents must be able
to acquire a representation of the others’ ethics either by contruction from
observation of their behavior (dashed arrow in Figure 2.3), or by direct
communication (plain arrows in Figure 2.3).

ai aj

ai aj
≈ ? ai aj

6≈
agent

observation

communication

Figure 2.3: Representing another agent’s ethics

Then, this knowledge needs be integrated in the individual decision-
making process while still being subject to revision (as new observations are
obtained for instance). Thus, dealing with individual and collective ethics
needs to consider their interaction through three main steps: construction,
usage and revision.
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1. Construction highlights how to build ethics which consists in defining
values, moral rules and ethical principles,

2. Usage highlights how ethics is taken into account for both individual
and joint decision-making,

3. Revision highlights how the different components of ethics can change
during the agents’ lifecyle.

2.2.1 Issues for individual ethics

In this section, we highlight the issues related to a multi-agent system where
several agents with various ethics interact. As said previously, issues are
classified with regards to construction, usage and revision issues.

Construction

As an example, let us consider two other agents: the first one is LittleJohn
which has the same desires and moral rules than RobinHood except from
desire D1; the second one is FriarTuck which has the same moral rules
than LittleJohn except from rule M2 which is replaced by the following
rule:

• M5. > → IMMORAL(STEAL(A)).

If we assume agents can observe the others’ behaviors, how LittleJohn

can represent FriarTuck’s ethics? Should it knows either FriarTuck’s moral
rules and ethical principles, or should it checks that FriarTuck’s behavior
complies with some principles?

Thus, from a general point of view, the situation awareness module of the
agents must be extended in order to represent both the others’ behaviors
and ethical models, namely behavioral and ethical components must also
be beliefs. Intuitively, acquiring those beliefs can be done either by direct
communication, or by observation and reasoning. However, as we cannot
assume communication in all cases, the second approach – i.e. observation
of behaviors – must ground the basis of the others’ ethics representation.

For instance, observing the proportion of actions done by another agent
such as a given moral or ethical principle is satisfied may allow the observer
to assume the observed agent follows this rule or principle. However, only
considering how other agents’ comply with rules and principles does not
allow LittleJohn to know that M5 is more general than M2.
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Usage

Once a representation is built, agents need an action – the judgement – to
evaluate this ethics, and need methods to use this judgement.

Firstly, how an agent can evaluate another ethics with respect to its own
ethics? Let us remark that evaluation does not mean associating a good
or bad absolute value but allows comparison between ethics. For instance,
FriarTuck can observe LittleJohn when this latter steals a rich agent and
can infer their moral rules and ethical principles differ. To this end, an
agent could be embedded with similarity, compatibility or complementarity
functions. It raises the question of the nature of the relationships between
ethics (generalisation, specification or complements). Computing a proxim-
ity degree between ethics can allow to evaluation possible cooperation degree
between agents, or probability of agreements.

Secondly, judging another agent – namely evaluating the conformity of
a behavior regarding a given ethics – needs the judge agent to be able to use
a theory of mind [Kim and Lipson, 2009]. For instance, would FriarTuck

have stolen the rich agent if it would have been in the same situation than
LittleJohn? Conversely, if each agent strictly conforms to its ethics, should
LittleJohn consider FriarTuck as an ethical agent as satisfying M5 implies
satisfying M2? Several kind of judgement can be considered with respect
to the information available to the judging agent:

• Blind judgement only uses the judging agent’s beliefs and ethics to
evaluation the others’ behaviors,

• Partially informed judgment takes into account some beliefs of the
judged agent (e.g. its situation awareness, its moral or its ethics),

• Fully informed judgment uses all the mental states of the judged agent
in order to check if this latter conforms to its own ethics.

Moreover, this action of judgement can be also subject to ethics. For
instance, an agent can consider as bad to judge another agent’s behavior
without having sufficient observations. Finally, with the ability to judge the
other agents, the judge agent can decide to collaborate, to share sensitive
data. Indeed, the agent can take the judgement of others in its own actions.
For instance, if RobinHood observes a high similarity between its own ethics
and LittleJohn’s ethics, it can change RobinHood’s evaluation of its own
actions regarding LittleJohn.
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Evolution

Lastly, an agent must be able to revise the representation of the others’
ethics, and thus must be able to reevaluate the conformity of a behavior
regarding the new description of the ethics. The temporality of the judge-
ment poses another issue: for instance, if LittleJohn steals a rich agent
and becomes rich in turns, RobinHood should not immediately consider it
as rich as its ethics will lead it to distribute its wealth to poor agents.

2.2.2 From individual ethics to collective ethics

In this section, we focus on relationships between the agents’ individual
ethics and the collective ethics of the organization they observes. As for
individual ethics, issues are classified with regards to construction, usage
and revision issues.

Before going into details, let us assume as an example that, after observ-
ing similarities between their ethics and the utility of a collaboration to steal
rich agent, RobinHood and LittleJohn have decided to build a MerryMen or-
ganization. On the other hand, another agent – called SheriffOfNottingham

– have found some agents that agreed on the immorality of stealing, and thus
have decided to build a Soldiers organization which is in charge to enforce
the moral rule M5.

Construction

As in the individual ethics’ issues, the agents need to be able to represent
the collective ethics of the organizations. How can FriarTuck can represent
the MerryMen’s ethics? It can build either an implicit representation based
on similarities between RobinHood’s and LittleJohn’s individual ethics, or
the MerryMen can present an explicit ethics defined at the organizational
level.

Building an implicit collective ethics can be based on the interest of
the agents to collaborate with the other agents which have similar ethics.
Such ethics emerges from the individual behaviors and is only observable in
the individual behaviors, without being explicitely described. An explicit
collective ethics can also be built via an agregation or construction process.

From a collective ethics, how an agent, outside ou inside the collective,
can identify such ethics? For instance, FriarTuck should be able to identify
MerryMen’s ethics. An isolated agent should be able to observe and identify
a global behavior, and then be able to deduce the ethics.
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Usage

Once identified, the agents must be able to judge this ethics. Indeed, when
FriarTuck has represented the MerryMen’s ethics, it should be able to eval-
uate this latter and measure how this collective ethics is far from its own
ethics. Then some problematic situations may appear due to the coexistence
of the individual ethics and the collective ethics. In case of contradiction or
incompatibility (i.e. two different actions that satisfy a single ethics without
going against the other one), the agent must decide which ethics to follow.

Moreover, how to enfoce the collective ethics within the organization?
The reaction of the collective regarding a possible collective ethics violation
must be taken into account. For instance, as the agents may face a dilemma
when choosing between their individual ethics and the collective one, such
behavior must be taken into account in order to attribute roles.

The relationships between collectives can also vary with respect to the
situation (for instance when two organization must necessarily collaborate to
acheive their objectives). Differences between two collective ethics can also
be observable in the agents’ individual behaviors in seldom cases. If those
collective ethics are explicit, agents can be able to identify those sitation
and choose how to collaborate with other organizations.

Conversely, if the collective ethics is explicit, then it can be enforced at
the individual level: the agent can join the collective if they comply to the
collective ethics. Some agents which endorse a given role can also benefit
from the role if, and only if, they comply to specific ethics. For instance,
only agents which comply to the Medicine deontological code could access
to some patient’s personal data. A

Evolution

A set of agents which observe an organization whose collective ethics does
not fit with their can consider to quit the current organization and create
another one. Thus this new organization is embedded with a collective
ethics which derives from the previous one. However, how to identify the
divergences?

The coexistence of individual and collective ethics also raise evolution
issues. Let us assume FriarTuck has observed similarities between its own
ethics and MerryMen’s one and it has decided to join the collective. How the
agent will integrate the whole collective ethics within its own, and under
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which conditions? For instance, once being a MerryMen, could the moral
rule M5 be an exception?

From this cohabitation, the collective ethics can change or be updated.
How collective ethics can evolved based on individual ethics? For instance,
MerryMen could ask the ethics of all joining agents and dedide to evolve the
collective ethics. On the other hand, an agent can decide to use the whole
collective ethics and forget for a while its own individual ethics? If neither
the collective, nor the agent decide to revise their own ethics, FriarTuck
can also only execute actions which satisfy, i.e. give to poor agents.

Let us assume the agent SheriffOfNottingham observe that FriarTuck
joined the MerryMen. In this case, it can revise it judgement of FriarTuck

even if it has no new observation of its behavior. Thus, judgements over a
collective may influence the judgement over the member of this collective.

Can an agent satisfy several collective ethics at once? Indeed, an agent
can decide to comply with the collective ethics of several organization (for
instance because it plays a role in all of them). Conversely, an agent that
must comply to several ethics can try to find a way to conciliate all of them.
In both cases, it can lead to revision in the collective ethics.

Lastly, it raises the question of the influence of ethics’ updates on combi-
nation of organizations. Indeed, ethics may be views as dynamic and source
of changes. For instance, an organization can be splitted if its collective
ethics lose its consistency, in order to build different organization with con-
sistent ethics each. Conversely, if two collective ethics are similar, it may
lead to an ethical merge in order to build a single organization. Obviously,
all those questions are related to the applicative domain.

Synthesis

We identify three questions devoted to individual agents in the context of
multi-agent systems: how to represent the other agents’ ethics? How to
judge the others? How to take into account this judgement in the agent’s
decision-making process? We also identify several questions devoted to or-
ganization with such multi-agent systems: how to build, merge and split
collective ethics? How to enforce collective ethics? How to make individual
and collective ethics coexist?
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2.3 Ethics and cooperation

As said previously, in autonomous multi-agent systems, agents have to coop-
erate in order to reach theirs goals. From an individual perspective, agents
make the best decision according what they know and what goals they desire
to acheive. However, from a collective perspective, the agents must make
a trade-off between their goals and the goals of other agents in order to
be able to cooperate. Such decision problems are traditionaly considered
as strategic games between rational agents, as studied in game theory [von
Neumann and Morgenstern, 1944].

2.3.1 Individual decision-making

From an individual perspective, we only consider here models where agents
decide about sequences of actions to execute with respect to a given goal.
In such models, agents compute policies, functions that give for each state
the action that must be executed in order to maximise the rewards obtained
by reaching goals. Such decision models are expressed by Markov decision
processes (MDPs) [Puterman, 2014, Puterman, 1994]. The model is based
on a tuple 〈S,A, T,R, γ〉 where S is a set of states, A a set of actions,
P (s, a, s′) the probability that executing action a in state s leads to state
s′, R(s, a, s′) the reward received after executing a in s and reaching s′,
and γ a discount factor that reduces the weight of long-term rewards. An
optimal policy can be computed in order to maximize the expected reward
over a given horizon. Many extensions of Markov decision processes were
proposed [Puterman, 2014]:

• partially observable models consider agents that does not know with
certainty in what state a given action leads them. Such models add an
observation function that describes for a given state and a given ac-
tion the probability to receive a given observation. Hidden models are
special cases of partially observable models where some states are un-
observable althrought their output is still visible. Thus, the sequence
of observations give information on the sequence of states [Baum and
Petrie, 1966].

• multi-agent models consider set of agents that decide jointly. Coopera-
tive agents that maximize a reward from a common function are mod-
elled by MMDPs (multi-agent Markov decision processes) [Boutilier,
1999] or DEC-MDPs (decentralized Markov decision processes) [Bern-
stein et al., 2000]. Such models are special cases of stochastic games
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that model competitive agents that maximize a reward from personal
functions given the actions of other agents.

• continuous-time models consider that the decision times do not follow
each other and are not instantaneous. Consequently, such models allow
to take time interval and the transition and reward function, and the
policy are parametrized by time [Rachelson, 2009].

• factored models allow compact representation of the state space by
using for instance binary decision diagrams (hybrid models between
logical and quantitative models) [Guestrin et al., 2003]. More gener-
ally, those models are based on the separability of the reward function
in order to express a large set of criteria on which an agent must base
its decision [Dibangoye et al., 2014].

However from an ethical perspective as claimed in [Boissier et al., 2015],
individual decision making process suffer two limits. Firstly, they do not
produce explanations. As decisions are based on quantitative aggregations
of rewards discounted in time, policies cannot explain why a given decision
is made (beyond the fact it maximizes the reward function). Secondly, such
models do not make an arbitration between an agent’s own ethics and a
collective ethics. To this end, we must consider collective decision making
models.

2.3.2 Collective decision-making

Collective decision making is studied in social choice theory where a set of
agents make a single decision from a set of outcomes [Sen, 1986]. To this
end, each agent has a preference profile – a preference relationship between
outcome – and the decision is make according to an aggregation of all pref-
erence profile [Chevaleyre et al., 2007]. Such model are used to represent
voting systems [Arrow, 1963,Young, 1995], allocation problems [Chevaleyre
et al., 2006,Bertsimas et al., 2011] or n-persons games (also called coalitional
games or partition games) [Nash, 1951, Shehory and Kraus, 1998, Rahwan
et al., 2015]. To implement an ethical autonomous agent, we consider here
coalitional games because those games allows to explicitely reason about
actions and power to make something happens or not. Thus, in coalitional
games, agents must decide with which agents they must collaborate in or-
der to reach their objectives. To this end, agents are partitioned in groups,
named coalitions. Each coalition is an abstraction of joint actions these
agents can acheive. Canonical coalition games are modeled by a couple
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〈N, v〉 where N = {1 . . . n} is a set of agents and v : 2N → R is the charac-
teristic function that associe a value to each coalition C ⊆ N . The solution
of a coalitional game is given by a solution concept that characterizes a
notion of optimality or stability.

Many solution concepts, such as the core, the nucleolus or the kernel,
were proposed, as weel as many extensions of coalitional games:

• bayesian coalitional games deal with uncertainty. In those models,
the characteristic function is drawn from a set of possible functions
according a given probability distribution after agents agreed on a
payoff distribution [Chalkiadakis et al., 2007,Ieong and Shoham, 2008,
Yang and Gao, 2014].

• overlapping coalitional games model games where agents can distribute
their resources among several coalitions and each coalition generates an
outcome with respect to its resources which can be transfered among
the agents participating in the coalition [Chalkiadakis et al., 2010]. A
coalition C is defined by a vector ~r where each component ri ∈ [0; 1]
represents the share of resources agent ai allocates to C. Consequently,
the characteristic function is then v : Rn → R.

• coalitional skill games explictely introduce a notion of tasks coalitions
can acheive. To this end, agents are associated to skills and skills
are needed to complete tasks. Consequently, coalitions are defined by
their power: the set of skills they have to acheive tasks. Such models
are very close to qualitative coalitional games and coalitional resource
games where skills are replaced by amount of resources [Bachrach and
Rosenschein, 2008].

• coalitional games with externalities are games where the value of one
coalition may be affected by other co-existing coalitions in a stable
structure [Michalak et al., 2009]. In this case, the characteristic func-

tion is replaced by a partition function P : 2N ×22N → R that returns
for a given coalition in a given partition the value of this coalition.
This model captures coalitional votes (such as games with side pay-
ments where each coalition vote for an issue that can have a different
utility for each agent).

• non-transferable coalitional games consider games where the agent
cannot divide the outcome of a coalition between its members. To
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this end, there is no characteric function but agents express a pref-
erence relationship between coalitions and solution concepts express
the properties of a stable partition. Non-transferable coalition games
are generaly hedonic games [Dreze and Greenberg, 1980] but may be
extended to several models such as quantitative coalitional games or
fractional games [Aziz et al., 2013a].

Given this state-of-the-art, coalition games model agents that seek to
maximise an outcome. As the characteristic or the partition function is con-
sidered symmetric with respect to each agent, such models cannot explicitely
model agents with ethical preferences. Extensions to non-transferable games
allow to model such preferences. However, they do not explicitely model a
trade-off between preferences (expressing ethics for instance) and objective
values of coalitions (expressing goals). However, ethical concepts are clas-
sicaly expressed in the solution concept throught a notion of stability and
fairness.

• Fairness expresses a justice notion (distributive justice) on the payoff
distribution between agents. First approaches is considering distri-
bution according to the Shapley value [Shapley, 1953] or the Banzhaf
index [Banzhaff III, 1964] of the agents, expressing that payoff must be
distributed with respect to each agent contribution. Those approaches
are axiomatized by symmetry, efficiency, monotonicity, additivity and
dummy player axioms. Relaxation of those axioms allow to define fam-
ilies of values [Yang, 1997]. For instance, rationing value relaxes the
efficiency axiom to allow agents to not distribute all the payoff [Yang,
1997] and solidarity value relaxes Shapley’s null-player axiom to allow
the agents which contribute the more in a coalition to support the
weaker members [Nowak and Radzik, 1994].

• Stability expresses the fact that no agent is incited to change coalition
knowing a payoff distribution [Driessen, 1991]. For instance, the core
expresses that no agent receives a profit lower than what it would
receive alone. The last core expresses that at least one agent sacrifices
a share of its payoff to ensure stability and the maximal sacrifice among
agents is minimal. However, the last core can be dictatorial as a subset
of agents can have the power to force other agents to accept a sacrifice
in order to find a stable solution. The nucleolus is more fair as it
minimize each sacrifice among all agents in a lexicographic order until
finding a stable solution [Schmeidler, 1969].

18



To conclude, coalition formation techniques may be used for ethical au-
tonomous agents with a hybrid coalitional game where an explicit trade-off
between preferences and payoff is expressed and where agents explicitely
bargain on the solution concept.

2.3.3 Synthesis

Thus, in the sequel, we will address both individual cooperative decision-
making and collective cooperative decision-making, taking into account eth-
ical considerations. To this end, we consider two different approaches:

1. In decentralized and open systems, a large number of agents interact
and make decisions to cooperate. A way to deal with unreliable or
unknown agents is to use trust [Castelfranchi and Falcone, 2010,Conte
and Paolucci, 2002,Sabater-Mir and Vercouter, 2013]. Trust allows the
agents to assess the interactions they observe or they make in order
to decide if interacting with a given agent is a priori acceptable. This
acceptance notion means that the investigated agent behaves well and
is reliable according to the investigator criteria. In order to deal with
trust and ethics, we propose an ethical judgement mechanism that
grounds the decisions to trust the other agents. This approach relies
on the judgement architecture developped in [Boissier et al., 2017] and
extends it.

2. Hedonic games (HG) model collective decision-making problems by
considering heterogenous agents in the sense that each agent expresses
preferences on the coalitions [Dreze and Greenberg, 1980]. Usually, a
solution of such a game is a stable partition: no agent wants and can
leave its coalition with respect to a criterion called a solution concept.
For instance, Nash-stability assumes that each agent leaves its current
coalition for another existing one if it prefers the latter to the former.
Thus, a solution concept is an a priori on agents’ behaviours. How-
ever, some games may consider agents which behave heterogeneously
based on different ethical values. In order to deal with such games,
we propose two new models of hedonic games which express a virtue
ethics. The first one – called hedonic game with multiple solution con-
cepts (MHG) – considers agents that behave with respect to different
and individual solution concepts, called local solution concepts. In
the second one – called hedonic game with double preference profiles
(HG2P) – agents express a preference relationship both on the possible
coalitions and on a subset of local solution concepts.
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Chapter 3

Ethical-based cooperation in
MAS

In order to deal with ethical-based cooperation in multi-agent systems, we
introduce in this section all fundamental concepts we need. Firstly, we
present trust as it is a sound way to ground interaction and cooperation.
Then, we briefly introduce ethics and show how it can be related to trust.
After presenting how ethics in autonomous agents is dealt with in the liter-
ature, we focus finally on the ethical agent architecture we based our work
in this article.

3.1 Ethical judgement of others

3.1.1 Kinds of judgement

The judgment process described in [Boissier et al., 2017] is useful for an
agent to judge it’s own behavior, namely one action considering its own
beliefs, desires and knowledge. However, it can also judge the behaviors
of other agents in a more or less informed way by putting itself at their
place, partially or not. Given an EJP as defined in [Boissier et al., 2017],
the states B, D, Ad, Ap, E , Am and knowledge of actions (A), goodness
knowledge – theory of good – (MR, V S) and rightness knowledge – theory
of right – (P , �e) may be shared between the agents. The ontology O is
assumed as common knowledge, even if we could consider in future works
having several ontologies. The way they are shared can take many forms
such as common knowledge, direct communications, inferences, and so on
that are beyond the scope of this article. In any cases, we distinguish three
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categories of ethical judgments:

• Blind ethical judgment where the judgment of the judged agent is
realized without any information about this agent, except a behavior,

• Partially informed ethical judgment where the judgment of the judged
agent is realized with some information about this agent,

• Fully informed ethical judgment where the judgment of the judged
agent is realized with a complete knowledge of the states and knowl-
edge used within the judged agent’s judgment process.

In all kinds of judgment, the judging agent reasons on its own beliefs
or those of the judged one. This kind of judgment can be compared to the
role of the human theory of mind [Kim and Lipson, 2009] in the human
judgment (the ability for a human to put himself in the place of another).
Then, the judging agent uses its EJP and compares the resulting Ar and
Am to the behavior of the judged agent. If the action performed by the
judged agent is in Ar, it means that it is a rightful behavior, and if it is in
Am, it means that is a moral behavior (being in both is stated as a rightful
and moral behavior). Both statements have to be considered with respect to
the context of the situation, the theory of good and the theory of right that
are used to judge. We consider that this ethical judgment is always relative
to the states, knowledge bases and ontology used to execute the judgment
process.

3.1.1.1 Blind ethical judgment

The first kind of judgment an agent can make is without any information
about morals and ethics of the judged agent (for instance when agents are
unable or do not want to communicate). Consequently, the judging agent
aj uses its own assessment of the situation (Baj and Daj )1, its own theory of
good 〈MRaj , V Saj 〉 and theory of right 〈Paj ,�e,aj 〉 to evaluate the behavior
of the judged agent at. This is an a priori judgment and at is judged as
not considering rightful actions, or moral actions if the action αat /∈ Ar,aj
or αat /∈ Am,aj .

3.1.1.2 Partially informed ethical judgment

The second kind of judgment that an agent can do is grounded on partial
information about the judged agent in case the judging agent is able to

1We use the subscript notation to denote the agent handling the represented set of
information.
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acquire parts of the knowledge of the judged agent (e.g. by perception or
communication). Three partial ethical judgments can be considered knowing
either (i) the situation (i.e. Bat , Dat , Aat) either (ii) the theory of good (i.e.
〈V Sat , MRat〉) and Aat

2 or (iii) the theory of right (i.e.〈Pat , �e, at〉) of the
judged agent.

Situation-aware ethical judgment Firstly, if the judging agent aj knows
the beliefs Bat and desires Dat of the judged agent at, aj can put itself in the
position of at and can judge if the action α executed by at belongs to Ar,aj ,
considering its own theories. Firstly, aj is able to evaluate the morality of α
by generating Am,at from Aat and qualify the morality of at’s behavior (i.e.
if α is or not in Am,at). The agent aj can go a step further by generating
Ar,at from the generated Am,at to check if α is conform to the rightness
process, i.e. belongs to Ar,at .

Theory-of-good-aware ethical judgment Secondly, if the judging agent
is able to obtain the moral rules and values of the judged one, it is possible
to evaluate the actions in a situation (shared or not), regarding these rules.
From a simple moral evaluation perspective, the judging agent can compare
the theories of the good by checking if moral values MVat or moral rules
MRat are consistent with its own theory of good (i.e. the same definition as
aj ’s one or at least no contradiction). For a moral judgment perspective, the
judging agent can evaluate the morality of a given action from the point of
view of the judged one. Interestingly, this judgment allows to judge an agent
that has different duties (due to a role or some special responsibilities for
instance) as human being can judge a physician on the conformity between
its behavior an a medical code of deontology.

Theory-of-right-aware ethical judgment Thirdly, let us now consider
the case of a judging agent able to reason on ethical principles and prefer-
ences of other agents, considering a situation (shared or not) and a theory
of good (shared or not)3. It allows to evaluate how the judged agent at
conciliates its desires, moral rules and values in a situation by comparing
the sets of rightful actions Ar, aj and Ar, at respectively generated by the
use of Paj , �e,aj and Pat , �e,at . For instance, if Ar, aj = Ar, at with an
unshared theory of good, it shows that their theories of right produce the

2In this case, Aat is necessary as, contrary to ethical principles, the moral rules can
explicitely refer to specific actions.

3If both the situation and the theory of good are shared, it is a fully informed judgment.
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same conclusions in this context. This judgment can be useful for an agent
to estimate how another can judge it with a given goodness process.

3.1.1.3 Fully informed judgment

Finally, a judging agent can consider both goodness and rightness process
to judge another agent. This kind of judgment needs information about all
the internal states and knowledge bases of the judged agent. This kind of
judgment is useful to check the conformity of the behavior of another agent
with the judge’s information about its theories of good and right.

3.1.2 An illustrative example

In order to allow a blind judgment, we introduce a new belief about the
behavior of another agent:

done(little_john,give,peter).

Then robin_hood compares its own rightful action and this belief to
judge little_john with:

blindJudgment(A,ethical,B):-

ethicalJudgment(_,A,X,C), done(B,X,C), A!=B.

blindJudgment(A,unethical,B):-

not blindJudgment(A,ethical,B),

agent(A), agent(B),

done(B,_,_), A!=B.

In this example, the action give to peter was not in Ar for robin_hood.
Then little_john is judged unethical by robin_hood. For a partial-knowledge
judgment, we replace a part of robin_hood’s knowledges and states by those
of little_john. With the beliefs of little_john (which believes that
peter is a poor agent and paul is a rich one), robin_hood judged him
ethical. Finally, for a full-knowledge judgment, we replace all the beliefs,
desires and knowledge bases of the agent robin_hood by little_john’s one.
Then, robin_hood is able to reproduce the whole Ethical Judgment Process
of little_john and compare both judgments of a same action.

3.1.3 Trust in multi-agent systems

Many definitions of trust exist but, in accordance with [Castelfranchi and
Falcone, 2010], we consider trust as a disposition to cooperate with a trustee.
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Here, trust is an action that might be motivated by desires, depending on
the context. It can be used as a condition to perform actions as delegating
actions, sharing resources and information, or any kind of cooperation. To
build trust, the agents first build an image of the investigated agents [Conte
and Paolucci, 2002].

An image is an evaluative belief that tells whether the target is good or
bad with respect to a given behavior. In the literature, images are aggregated
from the experiences, i.e. the observed behavior of the target agent and its
consequences. We can distinguish two kinds of approaches:

• statistical images [Abdul-Rahman and Hailes, 2000,Carbo et al., 2002,
Esfandiari and Chandrasekharan, 2001,Josang and Ismail, 2002,Marsh,
1994,Sabater-Mir and Sierra, 2001,Sen and Sajja, 2002,Yu and Singh,
2002] where the image is a quantitative aggregation of feedbacks about
interactions. This aggregation estimates the trends of an agent to be-
have well from another agent’s point-of-view. It can be represented
by Bayesian networks, Beta density functions, fuzzy sets, Dempster-
Shafer functions and other quantitative formalisms.

• logical images [Carter et al., 2002, Castelfranchi and Falcone, 1998,
Castelfranchi and Falcone, 2010, Muller et al., 2003, Vercouter and
Muller, 2010] where the image is a mental state rooted in every co-
operation action that is produced by interactions. A persistent image
allows to infer trust beliefs that can be used as preconditions to coop-
erate.

An agent can lack of observations and interactions in order to build
a correct image of a target. A way to deal with this problem is to use
reputation [Josang et al., 2007,Sabater and Sierra, 2005]. It consists in using
third party agents’ image of the target (that can depend on the initial agent’s
image has about the third parties) in order to assess a collective point-of-
view about the target. Both (individual) images and reputations are used
to lead to a trust action [Sabater-Mir and Vercouter, 2013]. Most of the
time, trust is dynamic and changes with respect to images’ and reputations’
changes.

3.2 Ethical trust-based cooperation model

Works dealing with ethical behaviors in autonomous agents often focus on
modelling moral reasoning [Berreby et al., 2015, Ganascia, 2007, Saptawi-
jaya and Pereira, 2014] as a direct translation of some well-known moral
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theories, or on modelling moral agency in a general way [Arkoudas et al.,
2005,Lorini, 2012]. However, those work do not clearly make the distinction
between theory of the good and theory of the right. Some other works deal
with ethical agent architecture. In the litterature, we find implicit ethical
architectures [Anderson and Anderson., 2014,Arkin, 2009] which design the
agent’s behavior either by implementing for each situation a way to avoid
potential unethical behaviors, or by learning from human expertise. We also
find cognitive ethical architectures [Coelho and da Rocha Costa, 2009,Coelho
et al., 2010, Cointe et al., 2016a, Cointe et al., 2016b] which consist in full
explicit representations of each component of the agent, from the classical
beliefs (information on the environment and other agents), desires (goals of
the agent) and intentions (the chosen actions) to some concepts as heuris-
tics or emotional machinery . However, all those approaches – both logics
or architectures – do not take into account the collective dimension of agent
systems, apart [Rocha-Costa, 2016] which consider morals as part of agent
societies.

Interestingly, the architecture given in [Boissier et al., 2017] makes a
clear separation between theory of the good and theory of the right, and
provides beliefs on various components of moral theories (moral rules, val-
ues or ethical principles for instance). Moreover, the architecture given
in [Rocha-Costa, 2016] allows – but without operationalization – moral facts
(judgments over other agents or blames for instance) to be viewed as beliefs
that can be used in the agents’ decisions. In order to build ethical-based
cooperation, we need an operational model of ethical judgment such as the
one proposed in [Cointe et al., 2016a]. Inspired by [Rocha-Costa, 2016], we
reuse and extend this model in introducing beliefs on moral and ethical im-
ages of other agents. Then, we use those image beliefs to build trust beliefs
that can be used to make cooperation based on moral or ethics.

3.2.1 Judging other agents

Let us consider the judgment process introduced in [Boissier et al., 2017]:
the generic reasoning done in the ethical judgment process generates the set
of rightful actions for a given situation, regarding a set of knowledge.

As depicted in Fig. 3.1, the judgment process is organized into three
parts: (i) awareness and evaluation process, (ii) goodness process and (iii)
rightness process. Since this judgment process may use sets of knowledge
issued from another agent, we index all these sets with an agent id ai ∈ A
(e.g. Ara) with A the set of the agents. When a is the agent executing the
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Figure 3.1: Ethical judgment process as depicted in [Boissier et al., 2017]

process, this agent is using the process to decide about its own behavior,
when a is different, the agent uses this process to judge the behavior of a.

Awareness and evaluation processes

The evaluation process evaluates the set of actions Aa (actions are pairs of
conditions and consequences bearing on desires and beliefs) that it consid-
ered both desirable (Ada) and executable (Aca) from a’s point-of-view, with
respect to Da the set of desires and Ba the set of beliefs of a. Ba and Da

are produced by the situation assessment SA of the current state. Here,
DE and CE are respectively desirability evaluation and capability evalua-
tion functions. In the sequel, we call contextual knowledge of a (CKa), the
union of Ba and Da.

Goodness Process

The goodness process identifies moral actionsAma given a’s contextual knowl-
edge CKa, actions Aa, value supports V Sa and moral rules MRa. Moral
actions are actions that, in the situations of CKa, promote or demote the
moral values of V Sa. A value support is a tuple 〈s, v〉 ∈ V Sa where v ∈ Ov
is a moral value and s = 〈α,w〉 is the support of this moral value where
α ∈ Aa, w ⊂ Bai ∪ Da. Ov is the set of moral values used in the system4.
A moral rule is a tuple 〈w, o,m〉 ∈MRa. The situation w ∈ 2CKa is a con-
junction of beliefs and desires. The object o = 〈α, v〉 where α is an action
(α ∈ Aa) and v is a moral value (v ∈ Ov). Finally, m is the moral valuation
(m ∈ Om). For instance with Om = {moral, amoral, immoral} provides
three moral valuation for o when w holds. It is important to notice that a

4Let us notice that in [Boissier et al., 2017] moral values and moral valuation are shared
in the system. Agents distinguish themselves by moral rules and rightness processes.
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total order is defined on Om (e.g. moral is a higher moral valuation than
amoral, which is higher than immoral). In the sequel, moral rules MRa,
value support V Sa and values Ov, knowledge used in the goodness process
of the agent a are referred as the goodness knowledge (GKa).

Rightness process

Finally, the rightness process assess the rightful action Ara from the sets of
possible Aca , desirable Ada and moral Ama actions based on ethical prin-
ciples Pa to conciliate these sets of actions according to ethical preference
relationship �ea⊆ Pa × Pa. An ethical principle p ∈ Pa is a function which
evaluates if it is right or wrong to execute a given action in a given situation
regarding a philosophical theory. It describes the rightness of an action with
respect to its belonging to Aca , Ada and Ama in a given situation of CKa.
It is defined as p : 2Aa × 2Ba × 2Da × 2MRa × 2Va → {>,⊥}. Given a set of
actions issued of the ethic evaluation function EE that applies the ethical
principles, the judgment J is the last step which selects the set of rightful
actions to perform, considering the set of ethical preferences �ea defining a
total order on the ethical principles. In this judgment process, the rightful
actions are the ones that satisfy the most preferred principles in a lexico-
graphic order. In the sequel, ethical principles Pa and preferences �ea are
referred as the rightness knowledge (RKa).

3.2.2 Judging ethical conformity of behaviors

We extend now the previous judgment process to judge the ethics and moral-
ity of the behavior between t0 and t of an agent a′. Inspired from [Rocha-
Costa, 2016] which considers beliefs on moral facts, the judgment process
produces now beliefs (ethical_conformity, moral_conformity) stating
the conformity to ethical principles or moral rules and values, that can be
used in the agent’s reasoning. Before defining these beliefs, let us define first
an agent’s behavior as follows:

Definition 3.1 (Behavior) The behavior ba′,[t0,t] of an agent a′ on the
time interval [t0, t] is the set of actions αk that a′ executed between t0 and t
as 0 6 t0 6 t.

ba′,[t0,t] = {αk ∈ A : ∃t′ ∈ [t0, t] s.t. done(a′, αk, t
′)}

where A =
⋃an

ai=a1
Aai is the set of available actions in the multi-agent sys-

tem composed of n agents, and done(a′, αk, t
′) means that αk has been exe-
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cuted5 by a′ at time t′.

An agent a can judge the conformity of an action αk executed by another
agent a′ with respect to its own goodness and rightness knowledge.

Definition 3.2 (Ethical conformity) An action αk is said to be ethically
conform with respect to the judging agent a’s contextual knowledge (CKa),
goodness knowledge GKa and rightness knowledge RKa at time t′, noted:

ethical_conformity(αk, t
′)

iff αk is in the set of rightful actions αk ∈ Ara computed by the ethical
judgment Ja of the judging agent a, based on [CKa, GKa, RKa] at time t′.

Let us notice that the ethical conformity of an action can be applied to
actions of the judging agent or to actions executed by another agent and
observed by the judging agent. This ethical conformity can be judged with
respect to the judging agent’s contextual, goodness and rightness knowledge.
It can be judged also with respect to the rightness or goodness knowledge
from another agent as long as the judging agent has a representation of these
knowledge. Finally, the ethical conformity is used to compute the set EC+

of ethically conform (resp. the set EC− of non ethically conform) actions
of the observed behavior ba′,[t0,t] of the judged agent a′ between t0 and t:

EC+
ba′ ,[t0,t]

={αk ∈ ba′,[t0,t] ∧ t
′∈[t0, t] s.t. done(a′, αk, t

′)

∧ ethical conformity(αk, t
′)}

EC−ba′ ,[t0,t]
={αk ∈ ba′,[t0,t] ∧ t

′∈[t0, t] s.t. done(a′, αk, t
′)

∧ ¬ethical conformity(αk, t
′)}

These two sets provide information on the behavior of the judged agent
and its compliance with the ethics of the judging agent. Nevertheless, it
cannot assess why an observed behavior is judged as unethical. Indeed, the
reason can be a difference between the judging and the judged agents’ theory
of the right, theory of the good or the assessment of the situation. In the
sequel, we will denote:

ECba′ ,[t0,t] = EC+
ba′ ,[t0,t]

∪ EC−ba′ ,[t0,t]
5A behavior can be concurrent: several actions can have been done at the same time.
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3.2.3 Judging moral conformity of behaviors

The moral conformity of an action with respect to a given moral rule is
realized regarding a moral threshold mt ∈MV and a situation assessment.

Definition 3.3 (Moral conformity) An action αk is said to be morally
conform at time t′ with respect to the judging agent a’s contextual knowledge
CKa and goodness knowledge GKa, considering the moral rule mr ∈MRa,
moral threshold mt ∈MVa, noted:

moral_conformity(αk,mr,mt, t
′)

iff αk belongs to Ama with a moral valuation greater or equal to mt, given
the considered moral rule mr, CKa and GKa at time t′.

Similarly to the ethical conformity, we use the moral conformity of an
action to compute the set MC+ (resp. MC−) of morally conform (resp.
non morally conform) actions of the observed behavior ba′,[t0,t] of a′ during
[t0, t] with respect to mr and mt:

MC+
ba’,[t0,t],mr,mt

={ak ∈ ba’,[t0,t] ∧ t
′ ∈ [t0, t] s.t. done(a’, ak, t

′)

∧moral conformity(ak,mr,mt, t
′)}

MC−ba’,[t0,t],mr,mt
={ak ∈ ba’,[t0,t] ∧ t

′ ∈ [t0, t] s.t. done(a’, ak, t
′)

∧ ¬moral conformity(ak,mr,mt, t
′)}

We can generalize the above evaluation of the moral conformity with
respect to a moral rule to a set of moral rules, considering the possibility to
define a subset ms of moral rules ms ⊆ MRa. Such a set ms represents a
cluster of rules such as rules based on some moral values, rules concerned
by particular situations, and so on. In the sequel, we denote:

MCba′ ,ms,mt,[t0,t] = MC+
ba′ ,ms,mt,[t0,t]

∪MC−ba′ ,ms,mt,[t0,t]

3.3 Trust within ethical behavior

In this section, the conformity beliefs defined in the previous sections is used
to compute the images of other agents (see Sec. 3.3.1). We then introduce
how we use these images to build trust (cf. Sec. 3.3.2). Sec. 3.3.3 provides
hints about how to use it.
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3.3.1 Ethical and Moral images of an agent

Following Sec. 3.1.3, the ethical and moral images of an agent are evaluative
beliefs that tell whether another agent has a conform behavior or not with
respect to a given rightness (RK) and goodness (GK) knowledge.

Definition 3.4 (Ethical Image (resp. Moral Image)) An ethical im-
age (resp. moral image) of an agent a′6 is the judgment of the behavior
ba′,[t0,t] of that agent in a situation with respect to an ethics (resp. to set
of moral rules ms and a moral threshold mt), regarding the contextual CK,
goodness GK and rightness RK knowledge of another agent a. This im-
age states a conformity valuation cv ∈ CV , where CV is an ordered set of
conformity valuation7. They are noted as ethical_image(a′, a, cv, t0, t) and
morality_image(a′, a, cv,ms,mt, t0, t)

Indeed, while an agent can only have a single ethical image of other
agents, it can have several moral images of the same agents depending on
the chosen ms and mt. To build these images, an agent a uses two aggre-
gation functions ethicAggregation and moralAggregation applied respec-
tively on evaluated actions regarding ethics ECba′ ,[t0,t] and regarding moral
MCba′ ,[t0,t]. Both aggregation functions compute the ratio of the weighted
sum of positive evaluations with respect to ethics and with respect to morals.
The weight of each action corresponds to a criterion (e.g. the time past from
the date of the evaluation, the consequences of the action and so on).

Definition 3.5 (Ethical aggregation function) ethicAggregation : 2A →
[0, 1] such that ethicAggregation(ECba′ ,[t0,t]) is:∑

αk∈EC+
ba′ ,[t0,t]

weight(αk)/
∑

αk∈ECba′ ,[t0,t]

weight(αk)

Definition 3.6 (Moral aggregation function) moralAggregation : 2A →
[0, 1] such that moralAggregation(MCba′ ,[t0,t]) is:∑

αk∈MC+
ba′ ,[t0,t]

weight(αk)/
∑

αk∈MCba′ ,[t0,t]

weight(αk)

6Let’s notice that in the definition of these images, the second parameter refers to an
agent. It means that the image is built with respect to the knowledge of this agent. The
first parameter refers to the considered agent’s behavior.

7As for morals, conformity valuations may be { improper, neutral, congruent }.
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In order to transform the quantitative evaluation into a qualitative one,
every conformity valuation is associated to an interval in the range of the eth-
ical and moral aggregation functions. Once the conformity valuation com-
puted, the associated beliefs moral_image(a′, a,ms,mt, cv, t0, t) or ethical_
image(a′, a, cv, t0, t) are produced. For instance, if congruent conformity
evaluation is defined in [0.75, 1], the behavior of an agent is considered
as ethical if ethicAggregation ≥ 0.75. Finally, those images can be used
to influence interactions by building trust relationships, or to describe the
morality of interactions, depending on the behavior of the others.

3.3.2 Building trust beliefs

According to the information on the moral and ethical images, an agent can
decide to trust others or not. Trust can be absolute (trust in the right-
ness of the others’ behavior) or relative to a set of moral rules (trust in
their responsibility, carefulness, obedience to some sets of rules, and so on).
We define two internal epistemic actions, with respect to ethical and moral
images respectively, that build beliefs on trust.

Definition 3.7 (Trust function) The ethical trust function TBe
a (resp.

moral trust function TBm
a ) is defined as: TBe

a : A → {>,⊥} (resp. TBm
a :

A× 2MRa ×MVa → {>,⊥})

Here, those trust functions are abstract and must be instantiated. In
example, when an agent a computes that the behavior of another agent a′ is
conform with CKa, GKa and RKa (i.e. the ethical image), the ethical trust
function produces a belief ethical_trust(a′, a). Similarly, when the agent
a computes that a′’s behavior is conform with ms (i.e. the moral image of
its behavior regarding ms is at least mt), the moral trust function produces
a belief moral_trust(a′, a,ms,mt).

3.3.3 Ethical trusting

Beliefs on images and trust can be be used as a part of the context to evaluate
the morality and ethics of an action. To this end, we can express that the
morality of an action that affect other agents depends on their image.

Firstly, ethical and moral trust can enrich the description of the moral
rules or values. It is useful to represent that the others’ behavior can have
an impact on how a context is qualified. For instance, the responsibility
value may be supported by delegating actions to ethically trusted agents
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only. Here, responsibility is defined as the capability to act safely with the
appropriate agents. We can also explicitly express it is not responsible to
delegate something to an agent known for its unethical behavior.

Secondly, specific moral trust beliefs can be used as elements of moral
rules. For instance, assuming a honesty moral value and its value supports,
an agent can express the moral rule “It is immoral to not behave honestly
towards an agent who is trusted as being honest”. Here, “who is trusted as
being honest” can be modeled by a moral_trust belief where the associated
moral rules ms are all rules that refer to honesty.

Finally, as evaluating and judging others are actions, it is also possible
to evaluate their morality or ethics. For instance, tolerance as a moral value
might be supported by building an image on the others with a low moral
threshold until the sets ECa′,[t0,t] or MCa′,[t0,t] are significant enough. The
choice of the thresholds, the weights and the conversion of the aggregation
into a conformity valuation can also be a way to represent various types of
trust. As another example, forgiveness can a value supporting high weights
on the most recent observations. It can allow then to specificy an ethics
of trust as “It is immoral to build trust without tolerance and forgiveness”
[Horsburgh, 1960].

3.4 Proof of concept

This section illustrates how the elements presented in the previous sections
have been implemented in a multi-agent system. We use the JaCaMo plat-
form [Boissier et al., 2013] where the agents are programmed in BDI architec-
ture using the Jason Language and the shared environment is programmed
with workspaces and artifacts from the Cartago Platform. The complete
source code is available on our website8. The environment is a simulated as-
set market where assets are quoted, bought and sold by autonomous agents.
Section 3.4.1 introduces ethical asset management and the features of our
application. Morals and ethics are defined in Sec. 3.4.2. Images and trust
building are shown in Sec. 3.4.3.

3.4.1 Asset market modeling

Trading assets leads to several practical and ethical issues9. This is all the
more important in automated trading as decisions, made by autonomous

8https://ethicaa.org
9http://sevenpillarsinstitute.org/
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agents to whom human users delegate the power to sell and buy assets,
have consequences in real life [for Economic and Affairs, 2009]. As shown
by [Bono et al., 2013], some investment funds are interested to make socially
responsible and ethical trading, and they are growing and taking a significant
position on the market. However, whereas the performance of such funds
can be measured objectively, their ethical quality is more difficult to assess
as it depends on the values of the observer.

In this proof-of-concept, we consider a market where autonomous trading
agents can manage portfolios in order to sell or buy assets. Assets types are
currencies – i.e. money – and equity securities – i.e. part of a company’s
capital stock. A market is represented as a tuple 〈 name, id, type, matching
〉 with the name of the market name, a unique identifier id, the type of
exchanged assets type and the algorithm used to store and execute orders
matching. On the market, each agent can execute buy, sell or cancel

orders. They respectively correspond in exchanging an equity for a currency,
exchanging a currency for an equity, and canceling an exchange order that
has not been executed yet. Each equity is quoted in a state-of-the-art Central
Limit Order Book (CLOB) [Aldridge, 2009] algorithm.

By observing the market, the agents get beliefs on the market. Agents
perceive each minute the volume (the quantity of exchanged assets), two
moving means, representing the average price on the last twenty minutes and
on the last forty minutes, the standard deviations of prices on the last twenty
minutes, the closing prices on this period, and the up and down Bollinger
bands (the average prices ± twice the standard deviations). Agents have also
beliefs on the orders added and stored in the CLOB and their execution.
The general form of all those beliefs is respectively:

indicators(Date,Mktplace,Asset,Close,Volume,Intensity,Mm,Dblmm,BUp,BDown)

onMarket(Date,Agent,Portfolio,Marketplace,Side,Asset,Volume,Price)

executed(Date,Agent,Portfolio,Marketplace,Side,Asset,Volume,Price)

A set of beliefs own(PortfolioName,Broker,Asset,Quantity) updated
in real time represent the agents’ portfolio. By reasoning on those beliefs
as a contextual knowledge CK, an agent is able to infer the feasibility of
passing a buy or sell order (simply by verifying if its own portfolio contains
the assets to exchange) to produce Ap. He can also reason on the desirability
of these actions to produce Ad. To this end, we implemented a simple but
classical method of trading decision-making based on comparisons between
the Bollinger bands and the moving means. Then, are introduced in our
experiment two types of agents:
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• Zero-intelligence agents make random orders (in terms of price and
volume) on the market to generate activity and simulate the ”noise”
of real markets. Each of them is assigned to one or every assets.

• Ethical agents implements the ethical judgment on their own actions
as a decision process to make their decisions. they have a simple
desirability evaluation function to speculate: if the price of the market
is going up (the shortest moving mean is over the other one), they buy
the asset, otherwise, they sell it. If the price goes out of the Bollinger
bands, these rules are inverted.

3.4.2 Ethical settings

We consider that the ethical agents are initialized with a particular set of
beliefs about activities of the companies (e.g. an energy producer using
nuclear power plants) and some labels about their conformity with inter-
national standards (e.g. an electric infrastructure producer labeled FSC).
Those beliefs are important to assess how it is moral to trade a given as-
set based on the company’s activities. Indeed, to provide information on
the morality of acting on a financial market, we implemented moral val-
ues and moral rules directly inspired from the literature available online10.
The ethical agents know a set of organized values: for instance “environ-
mental reporting” is considered as a subvalue of “environment”. Values are
represented as:

value("environment").

subvalue("promote_renewable_energy","environment").

subvalue("envirnmt_reporting","environment").

Agents have a set of value supports as “trading assets of nuclear energy
producer is not conform with the subvalue promotion of renewable energy”,
represented as:

valueSupport(buy(Asset,_,_,_),"envirnmt_reporting"):-label(Asset,"FSC").

Agents are also equipped with moral rules stating the morality of envi-
ronmental considerations. For instance, “It is moral to act in conformity
with the value environment” is simply represented as:

10http://www.ethicalconsumer.org/
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moral_eval(X,V1,moral):- valueSupport(X,V1) & subvalue(V1,"environment").

moral_eval(X,"environment",moral):- valueSupport(X,"environment").

moralSet("environment","value_environment").

We declare in the last line this moral rule as an element of a set of moral
rules related to environmental values (in order to build images). In this
example, an ethical agent is able to infer for instance that, regarding its
beliefs and this goodness knowledge, trading the asset of the FSC labeled
company is moral while trading the asset of the nuclear energy producer
is both moral and immoral. Thus, the agent needs a rightness knowledge
to discriminate if it is right or wrong to trade the second assets. Finally,
ethical agents are equipped with ethical principles, such as the Aristotelian
ethics (inspired from [Ganascia, 2007]) and more simple principles such as
considering perfectAct “It is rightful to do a possible, moral and desirable
action”, the non shaming desire desireNR “It is rightful to do a possible,
not immoral and desirable action” and the moral duty dutyNR “It is rightful
to do a possible, moral and not undesirable action”. Please see directly the
file rightness_process.asl for more details. Each agent can have several
ethical principles, and the rightful actions to execute are the ones that satisfy
the preference over the principles according to a lexicographic order.

3.4.3 Image and trust building

Each time an action is executed on the market (i.e. a buy order matches
with a sell order) the agents receive a message and evaluate their image
of the agents implied in the transaction. As said in the previous section,
evaluating the conformity of behaviors, building the image and the trust
beliefs are actions. Thus, they are implemented as Jason plans. In the
sequel, we will detail moral trust building. Ethical trust building is based
on the same ideas. The following plan evaluates the conformity of the action
with each moral rule of the set MSet and increments the value X stored in
the belief moralAggr(Agent,MSet,X).

In this implementation, we use a linear aggregation, (i.e. it associates the
same weight with each action). Then, a conformity valuation is computed
regarding the proportion of conform actions in order to build the image. We
use here three conformity valuation (arbitrary neutral for an aggregated
ratio in [0.4, 0.6[, improper if lower and congruent if higher). Finally, when
the conformity valuation crosses a trust threshold, a plan updates the trust
belief in the judged agent regarding the set of moral rules.
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+!trust : moralImageOf(Agent,MoralSet,ConformityValuation)

& trustThreshold(Threshold) & not trust(Agent,MoralSet)

& not tOrderOnConformityValuation(Threshold,ConformityValuation)

<- +trust(Agent,MoralSet); !trust.

Similarly, we have implemented a plan for ethical conformity which stores
the number of conform and non conform actions regarding the rightness
knowledge, a plan for ethical image building and a plan for ethical trust
building.

3.4.4 Results
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Figure 3.2: Evolution of the output of an ethical aggregations functions

Fig. 3.2 shows the evolution of the ethical aggregations computed by an
ethical agent on the others’ behaviors. In this simuation, three groups of
ethical agents are created with three different theories of good. Let us notice
that the judge agent evaluates the behvior of both ethical an zero intelligence
agents. Our model only evaluates the conformity of an observed behavior
with an ethics, without trying to understand or reason on the intentions of
the other agents. As expected, the ethical agents obeying the same ethics
stay at a similar value (thick lines). The agents obliged to generate activity
on such assets stay at 0.0 or 1.0 because they respectively can’t do moral or
evil actions regarding the judge’s point of view. All the other agents slowly
converge towards a value depending on their behavior. By the use of the
“mind observer” provided by JaCaMo, the reader can observe the beliefs of
the agents during the experiments.
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Chapter 4

Value-based hedonic games

This chapter present a new model of hedonic games, extending classical
approaches to individual solution concepts. In such games, agents describe
preference on the way they form coalition. It is important to notice that
this chapter study the theoretical properties of such games, independantly
of all ethical considerations. Indeed, this model will ground a virtue ethics
for cooperative games, described in Chapter 5.

4.1 Dealing with multiple solution concepts

When agents sharing the same environment have to temporary cooperate in
order to reach theirs goals, one question is to decide with whom to cooper-
ate, and how to form teams? This core question is addressed in coalition
games which consist in partitionning agents such that all of them are satisfied
with the teams (or coalitions) they are assigned to. A large panel of coali-
tion games has been proposed in the litterature [Aziz et al., 2011,Bogomol-
naia and Jackson, 2002,Dreze and Greenberg, 1980,Elkind and Wooldridge,
2009]. On the one hand, quantitative models consider agents that maximize
an utility function. On the other hand, qualitative models – also called hedo-
nic games – consider agents that evaluate qualitatively the outcome [Dreze
and Greenberg, 1980, Elkind and Wooldridge, 2009]. In the latter models,
each agent expresses a preference relationship (or preference profil) on the
coalitions it can join.

Definition 4.1 (Hedonic game) An hedonic game is a tuple HG = 〈N, (�i
)ai∈N 〉 where N = {a1, . . . , an} is the set of agents and �i is ai’s preferences
on coalitions, a complete and transitive preference relationship on the set
Ni = {C ⊆ N : ai ∈ C}.
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Table 4.1: Canonical solution concepts

Solution concept Acronym Properties

Individual Rationality IR ∀ai ∈ N,Ci(Π) �i {ai}

Nash-Stability NS ∀ai ∈ N, @C ∈ Π ∪ {∅} : C ∪ {ai} �i Ci(Π)

Individual Stability IS ∀ai ∈ N, @C ∈ Π ∪ {∅} : C ∪ {ai} �i Ci(Π) ∧ ∀aj ∈ C,C ∪ {ai} �j C

Individual Contractual Stability ICS
∀ai ∈ N, @C ∈ Π ∪ {∅} : C ∪ {ai} �i Ci(Π) ∧ ∀aj ∈ C,C ∪ {ai} �j C
∧∀ak ∈ Ci(Π), ak 6= ai, Ci(Π) \ {ai} �k Ci(Π)

Contractual Nash-Stability CNS
∀ai ∈ N, @C ∈ Π ∪ {∅} : C ∪ {ai} �i Ci(Π)
∧∀ak ∈ Ci(Π), ak 6= ai, Ci(Π) \ {ai} �k Ci(Π)

(Strong) Core Stability CS ∀ai ∈ N, @C ∈ Ni : C �i Ci(Π) ∧ ∀aj ∈ C,C �j Cj(Π)

Optimality O ∀ai ∈ N, @C ∈ Ni : C �i Ci(Π)

Pareto-Optimality PO @Π2 ∈ PN : ∀ai ∈ N,Ci(Π2) �i Ci(Π) ∧ ∃aj ∈ N,Cj(Π2) �j Cj(Π)

For a given hedonic game, computing a solution consists in searching
for a stable partition, meaning that no agent would or can deviate from
its current coalition. A solution concept is the set of partitions which sat-
isfy a set of predefined properties. For instance, Pareto-Optimality is the
solution concept which characterizes all partitions such that no agent can
leave its current coalition for a preferred one without making another agent
less satisfied. A large set of solution concepts has been considered in the
litterature [Aziz et al., 2011, Peters and Elkind, 2015, Sung and Dimitrov,
2007]. In this article, we considers the most usual solution concepts given in
Table 4.1. For a given set of agents N , we denote by PN the set of all parti-
tions of N . For a partition Π ∈ PN , Ci(Π) denotes the coalition of agent ai
in Π. According to the solution concept X, a partition Π is stable (denoted
Π ∈ X) if, and only if, all properties characterized by X are satisfied.

In the sequel, by abuse of notation, we write core stability instead of
strong core stability. Interestingly, solution concepts can be defined by a con-
junction of authorized deviations. For instance, contractual Nash-stability
allows agents to deviate for a preferred coalition (Nash-deviation) under
reserve of acceptance from all agents of the coalition it leaves (contrac-
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tual deviation). Another interesting point is those authorized deviations
represent different kind of behaviours. For instance, Nash-stability models
individualist agents which consider only their own preferences, whereas in
opposite individual contractual stability models agents which have collective
considerations.

Hence, while solution concepts incorporate an a priori on individual
agents’ behaviours, they also incorporate a global a priori that applies on
all agents. In order to consider agents which are heterogenous in their be-
haviours, we propose a model of hedonic games where each agent expresses
a local solution concept that it desires to satisfy. Thus, in this model, so-
lution concepts are no longer exogenous parameters but are now agents’
parameters.

4.1.1 From global to local

Canonical solution concepts characterize properties that must be satisfied for
all agents. We consider the same properties from an individual agent’s point-
of-view: we consider local solution concepts which characterize properties
that must be satisfied for a fixed agent.

Definition 4.2 (Local solution concept) Let HG = 〈N, (�i)ai∈N 〉 be a
hedonic game, X a global solution concept and ai ∈ N an agent. The local
solution concept LXi characterizes all partitions Π ∈ PN which satisfies the
properties of X from the agent ai’s point-of-view.

We propose in Table 4.2 a local solution concept associated to each global
solution in Table 4.1. For instance, while global Pareto-optimality is denoted
PO, local Pareto-optimality is denoted LPOi.

Local solution concepts allow agents to consider different stability con-
ditions in a same game. For instance, we can consider hedonic games where
a partition Π is stable from an agent ai’s point-of-view because it does not
exist a coalition that ai desires to join (Π ∈ LNSi), and that is stable from
another agent aj ’s point of view because deviating degrades the solution for
at least one other agent (Π ∈ LPOj).

Definition 4.3 (Hedonic games with multiple solution concepts) A
hedonic game with multiple solution concepts is a tuple MHG = 〈N, (�i
)ai∈N , LSC〉 where N = {a1, . . . , an} denotes the set of agents, �i denotes
the ai’ preferences on coalitions, and LSC = {LX1, . . . , LXn} denotes the
set of local solution concepts expressed by the agents, LXi being the local
solution concept of agent ai.

39



Table 4.2: Local solution concepts for an agent ai ∈ N

Local concept Properties

LIRi Ci(Π) �i {ai}

LNSi @C ∈ Π ∪ {∅} : C ∪ {ai} �i Ci(Π)

LISi @C ∈ Π ∪ {∅} : C ∪ {ai} �i Ci(Π) ∧ ∀aj ∈ C,C ∪ {ai} �j C

LICSi
@C ∈ Π ∪ {∅} : C ∪ {ai} �i Ci(Π) ∧ ∀aj ∈ C,C ∪ {ai} �j C
∧∀ak ∈ Ci(Π), ak 6= ai, Ci(Π) \ {ai} �k Ci(Π)

LCNSi
@C ∈ Π ∪ {∅} : C ∪ {ai} �i Ci(Π)
∧∀ak ∈ Ci(Π), ak 6= ai, Ci(Π) \ {ai} �k Ci(Π)

LCSi @C ∈ Ni : C �i Ci(Π) ∧ ∀aj ∈ C,C �j Cj(Π)

LOi @C ∈ Ni : C �i Ci(Π)

LPOi @Π2 ∈ PN : Ci(Π2) �i Ci(Π) ∧ ∀aj ∈ N,Cj(Π2) �j Cj(Π)
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In a MHG, a partition which satisfies the local solution concept LXi ∈
LSC is say localy stable for ai’s point of view.

Definition 4.4 (Local Stability) Let a game be a MHG. Let ai ∈ N an
agent and LXi ∈ LSC its local solution concept. A partition Π ∈ PN is
localy stable for ai’s point of view (denoted Π ∈ LXi if Π satisfies the LXi.

Finding a stable outcome consists in finding a partition that is localy
stable for each agent. Such a solution is said consensually stable.

Definition 4.5 (Consensual Stability) Let a game be a MHG. A parti-
tion Π ∈ PN is consensually stable (denoted Π ∈ CoS) if Π satisfies the
local solution concept of all agent:

CoS =
⋂
ai∈N

LXi

Example 4.1 Let HG = 〈N, (�i)ai∈N 〉 be a hedonic game with N = {a1, a2, a3}
and the following preferences:

�1= {a1, a2} � {a1} � {a1, a2, a3} � {a1, a3}

�2= {a2, a3} � {a1, a2, a3} � {a1, a2} � {a2}

�3= {a2, a3} � {a1, a2, a3} � {a3} � {a1, a3}

The possible partitions are:

Π1 ={{a1, a2, a3}} Π2 = {{a1}, {a2, a3}}
Π3 ={{a1, a3}, {a2}} Π4 = {{a1, a2}, {a3}}
Π5 ={{a1}, {a2}, {a3}}

Table 4.3 shows which local solution concepts are satisfied by the par-
titions from a1’s point-of-view. Let us remark that Π1 and Π3 satisfy no
local solution concepts. Thus, whatever is the local solution concept of
a1, both partitions are not consensually stable. Let us consider MHG =
〈N, (�i)ai∈N , LSC〉 with the same agents and preference profiles as HG,
and LSC = {LNS1, LIR2, LPO3}. In this game, we have CoS = {Π2,Π4}.
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Table 4.3: Satisfaction of a1’s local solution concepts

LX1 Π1 Π2 Π3 Π4 Π5

LIR1 X X X
LNS1 X X
LIS1 X X
LICS1 X X
LNCS1 X X
LCS1 X X
LO1 X
LPO1 X X

LOi

LPOi

LNSi

LCSi

LNCSi

LISi

LICSi

LIRi

Figure 4.1: Inclusion relationships of local solution concepts

4.1.2 Properties of MHG

We show in this section that local solution concepts have the same proper-
ties than their global canonical equivalents. Firstly, global solution concepts
present inclusion properties [Bogomolnaia and Jackson, 2002]. For instance,
NS ⊆ IS ⊆ ICS. Obviously, due to their definitions, local solution concepts
present the same inclusion relationships. We summarize them in Figure 4.1.
For instance, the local Nash-stability does not take the other agents’s pref-
erences into account and, thus, is necessarily included in LISi, LCNSi,
LICSi and LIRi. The dashed hyperedge in Figure 4.1 highlights the ir-
rational solution concepts which are solution concepts that do not ensure
that the agents are never in a coalition less preferred than their singleton
coalition.

Let us remark that, for all agent ai, any partition Π ∈ PN including
C∗i (the preferred coalition for ai) is necessarily in LOi. Thus, due to the
inclusion of local solution concepts, we have trivialy: all local solution con-
cept are non-empty. Let us considers now cases where all agents express the
same local solution concept LX.
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Proposition 4.1 Let X be a global solution concept. Let MHG = 〈N, (�i
)ai∈N , LSC〉 be a game. If ∀ai ∈ N , LXi ∈ LSC is the local solution concept
related to X, we have CoS = X.

We give below the proof for Pareto-optimality only. Proofs for other
solution concepts are based on a similar reasoning.

Proof 4.1 Let MHG be a game such that all agents consider the local Pareto-
optimality. CoS is the set of partitions which are locally Pareto-optimal for
all agents:

CoS =
⋂
ai∈N

LPOi

Firstly, let us show that Π ∈ CoS =⇒ Π ∈ PO. Let us fix a partition
Π ∈ CoS and let us assume that Π /∈ PO. By definition, Π /∈ PO if ∃Π2

such that ∀ai ∈ N,Ci(Π2) �i Ci(Π) and ∃aj ∈ N : Cj(Π2) �j Cj(Π).
However, it means that Π /∈ LPOj and thus Π /∈ CoS, which contradicts the
assumption. Hence, Π ∈ CoS implies Π ∈ PO.

Let us show now that Π ∈ PO =⇒ Π ∈ CoS. Let us fix a partition
Π ∈ PO and let us assume that Π /∈ CoS. By definition, Π /∈ CoS if ∃ai ∈ N
such that Π /∈ LPOi. By definition of LPOi, we have then ∃Π2 : Ci(Π2) �i
Ci(Π) and ∀aj ∈ N \ {ai}, Cj(Π2) �j Cj(Π). However, it contradicts the
assumption Π ∈ PO. Thus, Π ∈ PO implies Π ∈ CoS.

Consequently, we have Π ∈ PO ⇐⇒ Π ∈ CoS.

Proposition 4.1 highlights that MHG subsumes canonical hedonic games.
Moreover, as many global solution concepts can be empty (e.g. Nash-
stability), Proposition 4.1 implies that CoS can also be empty. More in-
terestingly, some consensually stable partitions are not characterized by any
canonical solution concept.

Proposition 4.2 Let a game be a MHG.

Π ∈ CoS 6=⇒ ∃X ∈ [IR,NS, IS, ISC,NSC,CS, PO,O] s.t. Π ∈ X

Proof 4.2 (Proof) Proof is given by an example of MHG where it ex-
ists a consensual stable partition which satisfies no global solution concept.
Let MHG be the game 〈N, (�i)ai∈N , LSC〉 with N = {a1, a2, a3}, LSC =
{LIS1, LICS2, LIR3} and the following preference profiles:

�1= {a1, a2, a3} �1 {a1, a2} �1 {a1} �1 {a1, a3}
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�2= {a2, a3} �2 {a2} �2 {a1, a2, a3} �2 {a1, a2}

�3= {a1, a2, a3} �3 {a1, a3} �3 {a2, a3} �3 {a3}

This game has three consensual stable partitions :

Π1 = {{a1, a2, a3}},Π2 = {{a1}, {a2, a3}}, and Π3 = {{a1, a2}, {a3}}.

Let us consider partition Π3. This partition satisfies no canonical solu-
tion concept considered in Table 4.1. Indeed, Π3 /∈ IR as {a2} �2 {a1, a2},
Π3 /∈ PO as {a1, a2, a3} is strictly preferred by all agents. However, while
the grand coalition is preferred by all agents (with respect to their pref-
erence profiles), agent a3 considers local individual rationality. Thus, as
C3(Π3) = {a3}, a3 does not deviate. Agents a1 and a2 could have formed
the grand coalition if they had considered collective deviations. However,
LIS and LICS are based only on personnal deviations. As all agents wait
the other ones to deviate, partition Π3 ∈ CoS.

4.1.3 Complexity of MHG

Complexity of hedonic games has been widely studied in the literature [Ballester,
2004, Aziz et al., 2013a, Peters and Elkind, 2015]. In most cases, finding a
stable partition for a given solution concept is known to be a NP-complete
problem [Peters and Elkind, 2015]. Subclasses of hedonics games which con-
sider particular assumptions on the preference profile (e.g. hedonic coalition
nets [Elkind and Wooldridge, 2009], fractional hedonic games [Brandl et al.,
2015], additively separable hedonic games [Aziz et al., 2013a]) can belong to
other complexity classes. For instance, core-membership for hedonic coali-
tion nets is coNP-complete [Elkind and Wooldridge, 2009]. In the case of
MHGs, as the agents can consider irrationnal local solution concepts, we
cannot make assumptions on the representation of the preference relation-
ships.

Let us consider the following decision problems.

LXi-Existence: given a game MHG and an agent ai, is there a LXi-stable
partition Π of N?

LXi-Membership: given a game MHG, an agent ai and a partition Π, is
Π a LXi-stable partition of N?

CoS-Existence: given a game MHG, is there a Consensually Stable par-
tition Π of N?
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Table 4.4: Complexity classes of the decision problems

LXi LXi-Existence LXi-Membership

LIRi > P

LNSi > P

LISi > P

LCNSi > P

LICSi > P

LCSi > P

LPOi > coNP-complete (Prop. 4.3)

LOi > P

CoS-Existence CoS-Membership
ΣP

2 (Prop. 4.4) coNP-complete (Corollary 4.1)

CoS-Membership: given a game MHG and a partition Π, is Π a Consen-
sually Stable partition of N?

Before giving proofs, we summarize the complexity results in Table 4.4.
Here > denotes that the LXi-Existence is trivial as it always exists a
solution.

Let us consider firstly the cases of local solution concepts LXi. As shown
previously, due to the inclusion relationships between local solution concepts
(see Figure 4.1), it always exists a locally stable partition. Consequently,
the LXi-Existence problem is trivially in O(1). For most local solution
concepts (i.e. LIRi, LNSi, LISi, LICSi, LNCSi, LCSi, LOi), the LXi-
Membership problem is trivially decidable in polynomial time [Elkind and
Wooldridge, 2009]. Only the local Pareto-optimality excepts this rule: the
LPOi-Membership decision problem is coNP-complete.

Proposition 4.3 Let MHG = 〈N, (�i)ai∈N , LSC〉. Let ai ∈ N be an
agent such that LPOi ∈ LSC. Let Π ∈ PN be a partition. The LPOi-
Membership decision problem for Π is coNP-complete.

As given in [Aziz et al., 2013b], we prove that the problem is coNP-Hard
with a reduction from Exact Cover by 3-Sets (X3C) decision problem. We
recall that X3C is defined as follows: given a set X (with |X| = 3q) and a
collection C of 3-element subsets of X, is there a subset C ′ ⊆ C such that
C ′ is a partition of U?
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Proof 4.3 Firstly, LPOi-Membership is cleary in coNP. Indeed, a parti-
tion Π2 which locally Pareto-dominates a partition Π1 is a polynomial-time
certificate that Π1 is not locally Pareto-optimal.

Secondly, let us prove that LPOi-Membership is coNP-Hard. An in-
stance (X,C) of X3C can be reduced to the LPOi-Membership problem. Let
us consider a MHG = 〈N, (�i)ai∈N , LSC〉 such that N = X and ∀ai ∈ N ,
we have c1 �i . . . �i ck �i N �i {ai}, where c1 �i . . . �i ck is a lin-
ear ordering on {c ∈ C : ai ∈ c} (all other coalitions with ai are assumed
less preferred than ai’s singleton coalition). Let us consider the partition
Π = {N} and an agent ai ∈ N . Π is locally Pareto-dominated from ai’s
point-of-view if, and only if, there is a partition C ′ ⊆ C (C ′ 6= N) of X.

(⇒) Let us assume that there is a subset C ′ ⊆ C such that C ′ is a
partition of X and C ′ 6= N . By definition of the preference profiles, we have
∀aj ∈ N , there a unique cj ∈ C ′ which verifies cj �j N . Thus, by definition,
Π is locally Pareto-dominated by C ′ and then is not locally Pareto-optimal
for the agent ai.

(⇐) Let us assume now that there is no subset C ′ ⊆ C such that C ′ is a
partition of X and C ′ 6= N . By definition of the preference profiles, it exists
at least one agent aj ∈ N such that ∀c ⊆ N, aj ∈ c, we have {N} �j c.
Thus, Π is locally Pareto-optimal for ai.

Let us considers now the case of the consensual stability.

Corollary 4.1 The CoS-Membership decision problem is coNP-complete.

By definition, a partition Π is consensually stable if, ∀ai ∈ N,Π ∈ LXi.
As LXi-Membership is in P for all local solution concepts except for the
local Pareto-optimality, which is coNP-complete, then in the worst case, the
CoS-Membership decision problem is cleary coNP-complete.

Proposition 4.4 The CoS-Existence decision problem is ΣP
2 .

For ease of understanding, let us recall some notions about the poly-
nomial hierarchy. [Stockmeyer, 1976] defined the polynomial hierarchy by
the set {ΣP

k ,Π
P
k ,∆

P
k : k ≥ 1} with ΣP

0 = ΠP
0 = ∆P

0 = P , forall all
k ≥ 0, ΣP

k+1 = NP(ΣP
k ), ΠP

k+1 = coNP(ΣP
k ) and ∆P

k+1 = P (ΣP
k ). Re-

mark that NP = ΣP
1 and that coNP = ΠP

1 . ΣP
k and, ΠP

k can also be
defined as sets of decision problems solvable in polynomial time on an
alternating Turing machine with k alternations of existential and univer-
sal quantifiers. A ΣP

k decision problem can be rewritten by a formula
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∃X1∀X2∃X3 . . . QXk, f(X1, . . . , Xk), where f is a propositional logic for-
mula and Q is either the existential quantifier (if k is even), either the
universal quantifier (if k is odd). In the same way, a ΠP

k decision problem
can be defined by a formula ∀X1∃X2∀X3 . . . QXkf(X1, . . . , Xk), where here
Q is the universal quantifier if k is even and existential quantifier if k is odd.
The following proof is based on this definition.

Proof 4.4 Let MHG = 〈N, (�i)ai∈N , LSC〉. In order to prove CoS-Existence
being in ΣP

2 , we show that the decision problem can be written as a formula
∃x : ∀y, f(x, y) where f(x, y) can be checked in polynomial a time.

Firstly, let us remark that the CoS-Existence decision problem means
checking that ∃Π ∈ PN : Π ∈ CoS. By definition of the consensual stability,
this problem is the equivalent of finding a partition Π which satisfies the
LXi-Membership for all LXi ∈ LSC. Thus,

∃Π ∈ PN : [∀LXi ∈ LSC,Π ∈ LXi] (4.1)

Let us consider two subsets of LSC: LSCA = {LXi ∈ LSC : LX 6=
LPOi} and LSCB = {LXi ∈ LSC : LX = LPOi}. LSCB is the set of
all locally Pareto-optimal solution concepts in LSC. Formula (4.1) can be
rewritten in:

∃Π ∈ PN : [∀LXi ∈ LSCA,Π ∈ LXi

∧ ∀LPOi ∈ LSCB,Π ∈ LPOi]
(4.2)

The first part of the inner condition of Formula (4.2) can be checked in
polynomial time as LXi-Membership is in P for LXi 6= LPOi. Checking
the second part of the inner condition of Formula (4.2) is coNP-complete
as LXi-Membership is also coNP-complete for LXi = LPOi. However,
let us consider the negation of this LPOi-Membership problem: checking
that ∀Π2 ∈ PN ,¬(Π2 �Pi Π) where Π2 �Pi Π means that Π2 locally Pareto-
dominates partition Π. Thus, Formula (4.2) is equivalent to:

∃Π ∈ PN : ( ∀Π2 ∈ PN , [∀LXi ∈ LSCA,Π ∈ LXi

∧ ∀LPOi ∈ LSCB,¬(Π2 �Pi Π)] )
(4.3)

Now, all inner condition of Formula (4.3) can be checked in polynomial
time. Consequently, CoS-Existence is in ΣP

2 .

Obviously, depending on the local solution concepts the agents consider,
the decision problem can be easier. For instance, if no agent considers the lo-
cal Pareto-optimality then CoS-Existence is ”simply” NP-complete. If all
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Table 4.5: Mean number of stable partitions with respect to |N |

Rational solution concepts Irrational solution concepts︷ ︸︸ ︷ ︷ ︸︸ ︷
|N | O NS CS IS IR CoS CNS PO CIS Bn
3 0.084 0.343 1.024 1.09 1.968 1.199 1.629 2.949 3.003 5

4 0.007 0.219 1.12 1.399 3.269 1.547 3.444 6.869 7.591 15

5 0 0.158 1.177 1.892 6.44 2.193 8.5 18.35 22.49 52

6 0 0.095 1.241 2.836 13.745 3.14 24.355 54.126 74.765 203

7 0 0.054 1.3 4.86 31.882 6.053 77.5475 171.896 275.073 877

agents consider the local core stability then CoS-Existence is equivalent to
the CS-Existence, a well known NP-complete decision problem [Ballester,
2004,Elkind and Wooldridge, 2009]. Interestingly, if all agents only consider
the local Pareto-optimality then the decision problem is trivial (i.e. there is
always a global Pareto-optimal solution).

4.1.4 Empirical analysis of MHG

In this section, we consider a macroscopical empirical study of MHGs. For
a number of agents varying from 3 to 7, we generate 1, 000 random MHGs
where preference profiles and local solution concepts are drawn uniformly at
random1. Table 4.5 shows (in a quasi-ascending order) the average number
of consensually stable partitions (|CoS|) and the number of those partitions
that satisfy a canonical solution concept. Column Bn gives for information
the Bell number which is the number of possibles partitions with n agents.
For instance, row |N | = 5 is read as follows: none of the 1, 000 has an
optimal solution. In the Nash-Stability column, 0.219 means that, in less
of the 4/5th of the games with 5 agents, there is no Nash-stable partition.
Let us remark that we give here the average results. Thus, some games
have several Nash-stable partitions but, majoritarily, there is no Nash-stable
partition. Column CoS highlights that with 5 agents, over the 52 partitions,
a few more than 2 satisfy the Consensual Stability.

Here, the main point is that the number of consensually stable partitions
in a MHG is quasi-systematically greater than the number of the rational

1We are conscious of the limits of this study due to algorithmic complexity. Given a
strict order on preferences profiles, n agents and m possible local solution concepts, there
is (m × 2n−1!)n different MHGs. For instance, if n = 3 and m = 8, there is 7, 077, 888
different games.
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Figure 4.2: CoS partitions in canonical solution concepts

solution concepts (NS, IS, CS and O), and lower than the number of ir-
rational solution concepts (CIS, CNS and PO). Only individual rationality
(IR) excepts this rule. Thus, our model expresses a tradeoff between rational
and irrational solution concepts: only agents that accept an irrational local
solution concept can deviate towards a coalition which is less preferred than
their singleton coalition. Figure 4.2 gives the ratio of consensually stable
partitions which also satisfy a canonical solution concept. Let us remark
that a large part of the CoS partitions are also in PO or ICS. For instance,
with 7 agents, 86% of consensual stable partitions are Pareto-optimal. Thus,
our model is mostly a restriction of those two solution concepts, while still
allowing consensually stable partitions which satisfy no canonical solution
concepts (see Proposition. 4.2 and column No concept in Figure 4.2).

Figure 4.3 gives the proportion of MHGs with at least one consensual
stable partition, with respect to |N |. With 3 agents, for 80% of the games,
there is a consensual stable partition. This ratio strongly decreases when
more agents are involved in the game. Thus, with 7 agents, only around 40%
of random games have a consensual outcome. Games without CoS partition
are those where agents either impose strong restrictions on accepted devi-
ations, either have inconsistent preferences profiles. If these agents could
consider other local solution concepts, a consensually stable partition could
appear in such a game. To this end, we extend MHG with another preference
profiles on the local solution concepts.
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Figure 4.3: Ratio of MHG with at least one CoS partition

4.2 Extension to preferences on solution concepts

4.2.1 A second preference profile

If an agent has preferences on coalitions, then it could also have preferences
on the solution concepts that it considers. Thus we propose here a second
kind of hedonic games where agents express two preference profiles: the first
one on the coalitions, and the second one on the local solution concepts.

Definition 4.6 (Hedonic games with double preference profiles) A he-
donic game with double preference profiles is a tuple HG2P = 〈N, (�Ci
)ai∈N , (�

LSCi
i )ai∈N 〉 where:

• N = {a1, . . . , an} is the set of agents,

• �Ci is ai’s preferences on coalitions, a complete and transitive prefer-
ence relationship on the set Ni = {C ⊆ N : ai ∈ C}.

• �LSCi
i is ai’s preferences on local solution concepts, a complete and

transitive preference relationship on LSCi, which is a non-empty set
of local solution concepts for ai.

Example 4.2 Let us consider the HG from Example 4.1 and let us trans-
form this game in an HG2P by adding to HG the agents’ preference profiles
on local solution concepts given in Table 4.6. In this HG2P, all agents
strictly prefer their local optimality (compared to all local solution concepts).
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Table 4.6: HG2P of Example 4.2

N {a1, a2, a3}
�C1 {a1, a2} �C1 {a1} �C1 {a1, a2, a3} �C1 {a1, a3}
�C2 {a2, a3} �C2 {a1, a2, a3} �C2 {a1, a2} �C2 {a2}
�C3 {a2, a3} �C3 {a1, a2, a3} �C3 {a3} �C3 {a1, a3}
�LSC1

1 LO1 �LSC1
1 LNS1 �LSC1

1 LCS1 �LSC1
1 LIS1 �LSC1

1 LNCS1 �LSC1
1 LIR1 �LSC1

1 LICS1 �LSC1
1 LPO1

�LSC2
2 LO2 �LSC2

2 LNS2 �LSC2
2 LIS2 �LSC2

2 LCS2 �LSC2
2 LIR2 �LSC2

2 LNCS2 �LSC2
2 LICS2 �LSC2

2 LPO2

�LSC3
3 LO3 �LSC3

3 LPO3 �LSC3
3 LNS3 �LSC3

3 LIS3 �LSC3
3 LNCS3 �LSC3

3 LICS3 �LSC3
3 LCS3 �LSC3

3 LIR3

However, agents a1 and a2 prefer local Nash-stability to local Pareto-optimality
in opposite to a3.

In the sequel, LXi ∈ LSCi denote that the local solution concept LXi

is considered by the agent ai in its preference profile �LSCi
i . Let us remark

that, while in Example 4.2 all agents consider all the local solution concepts
given in Table 4.2, two agents can consider preferences on different sets of
local solution concepts. For instance, an agent ai can consider only local
Pareto-optimality and local core stability whereas another agent aj can have
preferences on local Nash, local individual and local core stability. Trivially,
a MHG is subclass of HG2Ps where each agent considers a singleton set of
local solution concepts.

4.2.2 Stability and concessions

In order to find a solution which satisfies all preferences, agents have to find
a concensus. To this end, we propose to evaluate the stability of a partition
with respect to the number of concessions agents have to make on the rank
of the solution concepts they satisfy. The rank of the solution concept
LXi on �LSCi

i (denoted ri(LXi)) is the rank of this solution concept in the
preference profile. For a local solution concept LXi /∈ LSCi, we consider
ri(LXi) =∞.

Definition 4.7 (Concession vector) Let a game be a HG2P and Π ∈ PN
be a partition of N . The concession vector of Π ~c(Π) is:

ci(Π) =

{
r(LX∗i ) If ∃ LXi ∈ LSCi : Π ∈ LXi

∞ otherwise

where LX∗i = argmin
LXi∈LSCi:Π∈LXi

r(LXi).
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Table 4.7: Concession vectors of the HG2P of Table 4.6

Π ~c(Π)

Π1 = {{a1, a2, a3}} [∞, 2, 3]
Π2 = {{a1}, {a2, a3}} [2, 1, 1]
Π3 = {{a1, a3}, {a2}} [∞, 5,∞]
Π4 = {{a1, a2}, {a3}} [1, 5, 2]
Π5 = {{a1}, {a2}, {a3}} [6, 5, 8]

Intuitively, the consession vector of a partition Π represents the number
of concessions that each agent has to accept (on its preferences on solution
concepts) in order to have Π being in CoS. As an example, Table 4.7 gives the
concession vectors for the HG2P presented in Example 4.2. Let us remark
that if ci(Π) = ∞ (see for instance partition Π1 in Table 4.2), then Π is
never locally stable in ai’s point-of-view, and thus cannot be consensually
stable.

In the sequel, we denote by concession of ai the ith components of the
concession vector. Based on those concession vectors, we propose a new
global solution concept: the leximax stability. This solution concept is based
on the leximax behavioural rule as defined by [Delecroix et al., 2016] and
the least-core stability concept in transferable utility games [Shapley and
Shubik, 1966]. Concession vectors are sorted by decreasing order and com-
pared by lexicographic order. A partition satisfies the leximax stability if its
concession vector is not lexicographicaly dominated. Thus, leximax stable
partitions minimize the number of concessions of the worst satisfied agent,
then the second one and so on.

Definition 4.8 (Leximax preference relationship) Let N be a set of
agents, Π,Π′ ∈ PN be two partitions of N . Let [x1, . . . , xn] (resp. [y1, . . . , yn])
be the decreasing ordered set of ~c(Π) components (resp. ~c(Π′)). The parti-
tion Π is leximax-preferred to the partition Π′ (denoted Π �lex Π′) if, and
only if, ∃k ∈ [1, n] such that, ∀i ∈ [1, k[, we have:

xi = yi and xk < yk

Definition 4.9 (Leximax stability) Let a game be a HG2P and Π ∈ PN
be a partition of N . Π satisfies the leximax stability (denoted Π ∈ LexS)
if, and only if:

(1) @ ai ∈ N such that ci(Π) =∞,
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(2) @ Π′ ∈ PN such that Π′ �lex Π.

Example 4.3 Let us consider the HG2P from Example 4.2. Partitions Π1

and Π4 cannot be consensually stable as they do not satisfy any a1’s local
solution concepts. Among the 3 remaining partitions, we have the decreasing
ordered set of ~c(Π):

Π2 : [2, 1, 1], Π4 : [5, 2, 1] and Π5 : [8, 6, 5]

Thus, as Π2 �lex Π4 �lex Π5, partition Π2 is leximax stable.

As canonical hedonic games form a subclass of HG2P, the set of leximax
stable solutions can be empty. However, as some canonical solution concepts
ensure non-empty solutions for hedonic games, simple conditions on HG2Ps
ensure the existence of at least one leximax stable partition.

Proposition 4.5 Let HG2P = 〈N, (�Ci )ai∈N , (�
LSCi
i )ai∈N 〉 be a HG2P. If

there is a global solution concept X∗ such that ∀HG,X∗ 6= ∅ and that ∀ai ∈
N,LX∗i ∈ LSCi, then LexS 6= ∅.

Let us recall that, among the canonical solution concepts, individual ra-
tionality, Pareto-optimality and individual contractual stability ensure non-
emptyness for all game [Ballester, 2004, Bogomolnaia and Jackson, 2002,
Sung and Dimitrov, 2007].

Proof 4.5 Let us fix X∗ a global solution concept such that ∀HG, X∗ 6=
∅. Let HG2P1 = 〈N, (�Ci )ai∈N , (�

LSCi
i )ai∈N 〉 be a HG2P such that ∀ai ∈

N,LX∗i ∈ LSCi. Let HG1 = 〈N, (�Ci )ai∈N 〉 be a HG with the same agents
and the same preference profiles on coalitions. By definition, we have X∗ 6= ∅
in HG1. By Proposition 4.1, we have:⋂

ai∈N
LX∗i 6= ∅

Thus, ∀ai ∈ N,LX∗i 6= ∅. Moreover, it exists a partition Π1 ∈ PN such
that ∀ai ∈ N,Π1 ∈ LX∗i . As by assumption, ∀ai ∈ N,LX∗i ∈ LSCi, we
have ∀ai ∈ N, ci(Π1) 6=∞. Thus, Π1 satisfies the first condition for leximax
stability. Obviously, if the second condition of leximax stability holds, Π1 ∈
LexS.

Let us assume that Π1 does not satisfy the leximax stability. By defi-
nition, it means that ∃Π2 ∈ PN such that Π2 �lex Π1. As ∞ /∈ ci(Π1),
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we have necessarily ∞ /∈ ci(Π2), and thus Π2 also satisfies the first condi-
tion for leximax stability. Thus, either Π2 ∈ LexS, or it exists a partition
Π3 ∈ PN ,Π3 �lex Π2 which is necessarily leximax stable.

Consequently, if ∀ai ∈ N,LX∗i ∈ LSCi then LexS 6= ∅.

Obviously, the reciprocal statement is false. Even if the conditions char-
acterized by Proposition 4.5 may be seen as restrictive, we can reasonably
assume that all agent ai consider in practice LIRi ∈�LCSi

i in last rank.
Indeed, it represents the fact that if the agents do not find a stable solu-
tion, they will not cooperate and they will form their respective singleton
coalition.

4.2.3 Complexity of HG2P

We present here the complexity of the decision problems linked to HG2P.
More precisely, we consider the two following problems:

LexS-Existence: given a game HG2P , is there a LexS-stable partition Π
of N?

LexS-Membership: given a game HG2P and a partition Π, is Π a Lexi-
max stable partition of N?

Two study this decision problem, we firstly consider two other sub-
problems:

Concession-Existence: given a game HG2P , an agent ai and a partition
Π, is the inequality ci(Π) 6=∞ holds?

Concession-Value: given a game HG2P , an agent ai and an integer k ∈
[1, |LSCi|], is the equality ci(Π) 6= k holds?

Intuitively, the first one consists of checking that partition Π satisfies at
least one local solution concept considered by agent ai, and the second one
of finding the exact number of concessions that agent ai has to do such that
Π is locally stable.

Lemma 4.1 The Concession-Existence decision problem is coNP-complete.

Intuitively, the proof is the following: showing that ci(Π) 6=∞ is equiv-
alent to show that there is at least one local solution concept LXi ∈ LSCi

54



such that Π ∈ LXi. Even if for most of local solution concepts, the LXi-
Membership problem is polynomial times, in the case of the local Pareto op-
timality the problem is coNP-complete (see proposition 4.3). Consequently,
in the worst case, the Concession-Existence existance problem is coNP-
complete.

Lemma 4.2 The Concession-Value decision problem is ΣP
2 .

Proof 4.6 Let HG2P = 〈N, (�Ci )ai∈N , (�
LSCi
i )ai∈N 〉, be a game, ai ∈ N

be an agent, Π ∈ PN a partition and k ∈ [1, |LSCi|]. Verifying the equality
ci(Π) = k is equivalent to check the following formula:

∃LX?
i ∈ LSCi : r(LX∗i = k,Π ∈ LX∗i

∧∀LXi ∈ LSCi : r(LXi) < k,Π /∈ LXi
(4.4)

The LPOi-Membership decision problem is coNP-complete (see propo-
sition 4.3). Thus, we can rewrite the formula 4.4 with a quantified Boolean
formula of the form ∃X1 : ∀X2f(X1, X2) ∧ ∀X3,∀X4f(X3, X4), (where f is
tractable in polynomial time). If the the second part of this problem is coNP-
complete, the first one is ΣP

2 . Thus, for an agent ai ∈ N and a partition Π,
finding the exact value of ci(Π) is a ΣP

2 decision problem.

Both sub-decisions problem are necessary to solve the LexS-Existence
and the LexS-Membership decision problems.

Proposition 4.6 The LexS-Existence decision problem is ΣP
2 .

Intuitively, checking the existence of a leximax stable partition is equiv-
alent to show that there is at least one partition Π which verifies the
Concession-Existence decision problem for all agent.

Proof 4.7 Let HG2P = 〈N, (�Ci )ai∈N , (�
LSCi
i )ai∈N 〉, be a game. By def-

inition of the leximax-stability, there is a partition Π ∈ LexS if ∀ai ∈
N, ci(Π) 6= ∞. Concequently, the LexS-Existence decision problem in
thus HG2P is equivalent to shows that there exists a partition Π ∈ PN such
that for all agent ai ∈ N , the inequality ci(Π) 6=∞ holds :

∃Π ∈ PN : ∀ai ∈ N, ci(Π) 6=∞ (4.5)

As shown by lemma 4.1, for a given agent ai, theConcession-Existence
decision problem is coNP-complete. Let us recall that coNP = ΠP

1 and that
we can rewrite a such problem by a quantified Boolean formula ∀X3, f(X3),
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where f is tractable in polynomial time. This formula 4.5 can be rewritten
as follows:

∃Π ∈ PN : ∀ai ∈ N, ∀X3f(X3) (4.6)

Remark that formula 4.6 can itself be rewritten by a quantified Boolean
formula ∃X1 : (∀X2, ∀X3), f(X1, X2, X3), which is the definition of a ΣP

2

decision problem. In consequence, LexS-Existence decision problem is
ΣP

2 .

Denote that the complexity of this decision problem is due to coNP-
completeness of LPOi-Membership. However, for all agent ai ∈ N such
that LPOi /∈ LSCi, checking that ci(Π) 6= ∞ is easy. Morever, even
if LPOi ∈ LSCi, checking that ΠinLPOi is necessary only if ∀LXi ∈
LSCi, LXi 6= LPOi: Π /∈ LXi. Furthermore, if conditions of propostion ??
hold, the game has a leximax-stable partition and the decision problem is
them trival. Consequently, even if in the worst case, LexS-Existence is a
ΣP

2 decision problem, it is easy tractable in most cases.
Let us consider now the LexS-Membership problem.

Proposition 4.7 The LexS-Membership decision problem is ΠP
3 .

Intuitively, we can see that a partition Π2 such that Π2 �Lex Π is a
ΣP

2 certificate that Π is not leximax-stable. Thus, the membership decision
problem is coΣP

2 also denoted ΠP
3 .

Proof 4.8 Let HG2P = 〈N, (�Ci )ai∈N , (�
LSCi
i )ai∈N 〉 be a game and Π ∈

PN be a partition of N . Π satisfies leximax-stability if there is no partition
Π2 ∈ PN leximax-preferred to Π. Thus, we have to prove that:

∀ai ∈ N, ci(Π) 6=∞
∧∀Π2 ∈ PN ,Π2 6= Π,Π �lex Π2

(4.7)

We already proved that the first condition is a coNP-complete satisfac-
tion problem (see lemma 4.1). let us consider the second condition and the
satisfaction of the leximax-dominance Π �lex Π2. Checking the leximax-
dominance relation between Π and Π2 requires to compute both concession
vectors ~c(Π) and ~c(Π2). Unfortunetly, computing the concession vector of a
partition is equivalent to find a integer k ∈ [1, |LXi|] such that ci(Π) = k for
all agent ai ∈ N . As the Concession-Value decision problem is ΣP

2 (see
lemma 4.2), verifying the leximax-dominance is a ΣP

2 satisfaction problem.

56



[1,1,1,1,1]

[2,1,1,1,1]

[2,2,1,1,1]



[3,3,2,1,1] (0.01%)
[3,2,2,2,1] (0.06%)
[3,2,2,1,1] (0.06%)
[3,2,1,1,1] (0.22%)
[3,1,1,1,1] (0.58%)
[2,2,2,2,1] (0.07%)
[2,2,2,1,1] (0.9%)

60.17%

30.75%

7.22%

1.86%

Figure 4.4: Proportion of concession vectors

Consequently, the second part of formula 4.7 is problem that can be for-
mulated by a quantified Boolean formula ∀X1,∃X2 : ∀X3, f(X1, X2, X3),
which is the definition of a ΠP

3 decision problem. Thus, we have proven that
the LexS-Membership decision problem is ΠP

3 .

4.2.4 Empirical analysis of leximax stability

As in Section 4.1.4, we experiment on random games with 3 to 7 agents
whose both preference profiles are generated uniformly at random. Fig-
ure 4.4 shows the proportion of leximax stable concession vectors for 5
agents on 10, 000 random HG2Ps. Here, the proportion of games with-
out any consession2 is equivalent to proportion of CoS partitions in MHGs
(see Figure 4.3), namely 60%. Moreover, around 30% of the games only re-
quire a single agent to make a single concession (vector [2, 1, 1, 1, 1]). From
a global perspective, around 98% of the games require at most 2 agents to
make a single concession. Other concession vectors are anecdotic cases. For
instances, only 1 out 10, 000 games requires 2 agents to make 2 concessions
(vector [3, 3, 2, 1, 1]) in order to find a leximax stable partition.

Based on 1, 000 games, Figure 4.5 gives the mean (and standard devia-

2Games where for any leximax stable partition Π, ~c(Π) = [1, . . . , 1].
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Figure 4.5: Mean (and standard deviation) of concessions

tion) of the number of concessions. While we observe a slight increase with
the number of agents, the mean number of concessions ranges around 0.08
and 0.11 for |N | from 3 to 7. From a global perspective, an agent has to
make a concession only in 1 out of 10 games. The increase of the standard
deviation highlights that the more agents in the game, the more they have
to make concessions to find a leximax stable partition. While there may be
leximax stable partitions where all agents have to make a huge number of
concessions, it seems to be rare freak cases.3 In their huge majority, HG2Ps
have leximax stable partitions with a very small number of concessions.

3We have never observed such cases in our experimentations.
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Chapter 5

Embedding a virtue ethics in
hedonic games

The previous models allow to consider how to form coalition with agents
who have different point-of-view on how coalitions must be built. Each local
solution concept may be associated to a particular behavior. For instance,
local Nash-stability represents a kind of individualism while local individual
contractual stability represents a kind of politeness where agents deviate
if and only if the others agree. We propose here a generalisation of those
models, inspired from [Sung and Dimitrov, 2007] that we extend to the local
case. In this new model – called deviation games – solution concepts are
characterized by a composition of deviation conditions, and we will show it
allows us to define new solution concepts which can easily represent human
values. This approach is illustrated on three values: liberty, altruism and
hedonism.

5.1 Deviation games

5.1.1 Formal model

In an hedonic game, a deviation is any change in the coalition composition
due to a subset of agents.

Definition 5.1 (Deviation) Let HG = 〈N, (�i)ai∈N 〉 be a hedonic game
and Π ∈ PN be a partition. A deviation is a coalition D ⊆ N,D /∈ Π, D 6= ∅
such that the agents in D leave their current coalitions in Π to form D.

We denote by [D → Π] the application of deviation D on Π.
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Definition 5.2 (Applying a deviation) The partition Π′ which results
of [D → Π] is such that:

• ∀ai ∈ D,Ci(Π′) = D

• ∀aj ∈ N : ∃ai ∈ D,Cj(Π) = Ci(Π), Cj(Π
′) = Cj(Π) \D

• ∀ak ∈ N : @aj ∈ D,Cj(Π) = Ci(Π), Cj(Π
′) = Cj(Π)

Given a partition Π, nous denote by AllDi(Π) = {D ⊆ N,D /∈ Π : ai ∈
D} the set of deviations which implies the agent ai.

Let us consider now the agent ai’s point-of-view, and let us consider a
partition Π ∈ PN . We model the deviations the agent ai wants to be applied
with respect to its preferences (or any kind of other individual criteria) with
conditions that must be satisfied.

Definition 5.3 (Deviation condition) Let HG = 〈N, (�i)ai∈N 〉 be a he-
donic game, ai ∈ N be an agent, Π ∈ PN be a partition and D ∈ AllDi(Π)
be a deviation. A deviation conditition ∆X represents a property that must
be satisfied by D with respect to the agent ai and the partition Π in order to
be desirable for agent ai.

In the sequel, ∆X(ai, D,Π, HG) is a boolean function verifying if a devi-
ation D satisfy the condition ∆X from agent ai’s point-of-view, given Π and
HG. In order to illustrate those concepts, we only consider the conditions
given below. This choice is related to the classical solution concept given in
the litterature (see Section 5.1.2 for more details).

Condition of Rationality: ∆R := D �i Ci(Π) – the deviation D is ratio-
nal from the agent ai’s point-of-view if it (strictly) prefers the deviation
to its current coalition.

Condition of Acceptance: ∆A := ∀aj ∈ D \ {ai}, D �j Cj(Π) – the de-
viation D is acceptable if all agents in D (strictly) prefer the deviation
to their respective coalitions.

Condition of Defection: ∆D := ∀ak ∈ N \D : ∃aj ∈ D,Ck(Π) = Cj(Π),
Ck(Π)\D �k Ck(Π) – the déviation D is a defection if the departure of
all agents in D is prefered from the point-of-view of the other members
of their respective coalitions.

Condition of Optimality: ∆D := @C ⊆ N : C �i D – the deviation D is
optimal from the agent ai’s point-of-view if it is its prefered coalition.
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Condition of Pareto: ∆PO := ∃Π′ ∈ PN , D ∈ Π′ : ∀aj ∈ N,Cj(Π
′) �j

Cj(Π) – the deviation D is Pareto-compatible if it exists a partition Π′

including D where all coalitions of Π′ are strictly prefered to the one
of Π by all agents.

Condition of Individuality: ∆I := D \ {ai} ∈ Π ∪ {∅} – the deviation
D is individual if the agent ai is the single agent to deviate (which
implies that the other agents of D already form a coalition).

Condition of Collectivity: ∆C := D \ {ai} /∈ Π ∪ {∅} – the deviation D
is collective if several agents (including agent ai) did not belong to D
before joining it.

Let us remark that we have two different families of conditions. On the
one hand, conditions ∆R, ∆A, ∆D, ∆O and ∆PO refers to satisfying the
agents’ preferences. On the other hand, conditions ∆I et ∆C refers to the
identity of the deviating agents. Let us remark:

• ∆I(ai, D,Π, HG) ∨∆C(ai, D,Π, HG) is a tautology,

• ∆I(ai, D,Π, HG) ∧∆C(ai, D,Π, HG) = ∅,

• ∆O(ai, D,Π, HG) =⇒ ∆R(ai, D,Π, HG),

• ∆R and ∆O only refers to the agent ai,

• ∆A only refers to the agents of D \ {ai},

• ∆D only refers to the agents of N \D,

• ∆PO refers to all agents.

We only presented here the strong version of the conditions, as the un-
derlying preferences are strict. Thus, we denote by ∆−X all weak equivalents
with non-strict preferences. For instance, a deviation D which satisfies ∆−A
means that agents of D that are not ai can be indifferent to ai’s deviation:

∆−A := ∀aj ∈ D \ {ai}, D �j Cj(Π)

The condition of Pareto differs from the other ones. Indeed, this con-
dition does not only compare Π with the Π′ which results of [D → Π]: it
compares all coalitions of Π with all coalitions in all partitions which in-
clude D. It allows to reason not only on a single deviation but a sequence
of deviations.
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Example 5.1 Let us consider the partition Π = {{a1, a3}, {a2, a4}} in the
game:

N ={a1, a2, a3, a4}
�1={a1, a2} �1 {a1, a3} �1 {a1}
�2={a1, a2} �2 {a2, a4} �2 {a2}
�3={a3, a4} �3 {a1, a3} �3 {a3}
�4={a3, a4} �4 {a2, a4} �4 {a4}

From a1’s point-of-view, ∀D ∈ AllD1(Π), it exists at least an agent
aj ∈ N such that, for all Π′ resulting from [D → Π], Cj(Π) �j Cj(Π′).
The same reasoning holds for the other agents. Thus, whatever the agent
of the set of agents which deviate, this deviation negatively affects at least
an agent. For instance, let us consider the deviation D = {a1, a2}. We
have Π′ = {{a1, a2}, {a3}, {a4}} where C3(Π) �3 C3(Π′). However, while
this deviation is negative for a3 and a4, those agents can now apply the
deviation D2 = {a3, a4} with Π′′ = {{a1, a2}, {a3 a4}} which satisfies ∀ai ∈
N,Ci(Π

′′) �i Ci(Π).

Conditions of deviation allow an agent to define individual rules to char-
acterize how it wants to deviate. However, an agent ai may want to satisfy
several conditions at the same time, or may want that at least one of them
to be satisfied. For instance, an agent may express with ∆R∧∆A to deviate
if and only if it is preferable for it and for all the other agents of D. Such a
composition of deviation conditions is called the deviation concept of agent
ai.

Definition 5.4 (Deviation concept) Let be ai ∈ N . The deviation con-
cept Di of agent ai is a propositional formula on a set {∆1, . . . ,∆k} of de-
viation conditions. All deviation D ∈ AllDi(Π) which satisfies Di (denoted
D � Di) is considered as desirable for agent ai.

Given an agent ai ∈ N , a partition Π ∈ PN and a game HG, nous denote
by Di(Π, HG) the set of all desirable deviations for agent ai:

Di(Π, HG) = {D ∈ AllDi(Π)|D � Di}

Example 5.2 Let us consider an agent a1 with the deviation concept D1 =
∆R ∧∆I , meaning a1 looks for the individual deviation strictly prefered to
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its current coalition. Let us consider another agent a2 which looks for all
deviations strictly prefered by all agents involved in the deviation. This
concept can be formalized as follows: D2 = (∆I ∨∆C) ∧∆R ∧∆−A ∧∆−D. It
may be reduced to D2 à : ∆R ∧∆−A ∧∆−D as (∆I ∨∆C) is a tautology.

As shown by Exemple 5.2, several agents can have different deviation
concepts. Thus, based on the MHG described in the previous chapter, we
can define a new model of hedonic games: the deviation games.

Definition 5.5 (Deviation games) A deviation game is a triplet HGD =
〈N, (�i)ai∈N , (Di)ai∈N 〉 where N = {a1, . . . , an} is a set of agents, �i the
preferences of agent ai over the coalitions and Di the agent ai’s deviation
concept.

The underlying problem is a classical one: finding a partition Π ∈ PN
such that no agents want to deviate. However, contrary to classical hedonic
games, stability holds when there is no desired deviation from all agents’
point-of-view.

Definition 5.6 (Stability) Let HGD be a deviation game and Π ∈ PN a
partition. Π is locally stable from agent ai’s point-of-view if Di(Π, HGD) =
∅. Π is collectively stable if ∀ai ∈ N,Di(Π, HGD) = ∅.

5.1.2 Links with canonical concepts

As said previously, deviation conditions are linked to canonical solution con-
cepts. For instance, [Sung and Dimitrov, 2007] already proposed a notion of
deviation to characterize solution concepts but they do not consider devia-
tion conditions (their agents are homogeneous). Here, we establish the link
between deviation conditions and solution concepts. We give the proof for
the Nash stability. The proofs for the other concepts are similar. Finally,
Table 5.1 summarizes all the links.

Proposition 5.1 Let HGD be a deviation game and Π ∈ PN be a partition.
If ∀ai ∈ N,Di := ∆I ∧∆R then:

Π ∈ NS ⇐⇒ ∀ai ∈ N,Di(Π, HGD) = ∅

Proof 5.1 Let us fix a deviation game HGD and a partition Π ∈ PN . By
definition, Π ∈ NS si :

∀ai ∈ N, @C ∈ Π ∪ {∅} : C ∪ {ai} �i Ci(Π) (5.1)
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This characterization of Nash stability is equivalent to:

∀ai ∈ N, @C ⊆ N, ai ∈ C : C \ {ai} ∈ Π ∪ {∅} ∧ C �i Ci(Π) (5.2)

Let us distinguish three parts in the formula:

1. @C ⊆ N, ai ∈ C corresponds to @C ∈ AllDi(Π) as C 6= Ci(Π)

2. C \ {ai} ∈ Π ∪ {∅} corresponds to ∆I(ai, C,Π, HGD)

3. C �i Ci(Π) corresponds to ∆R(ai, C,Π, HGD)

Thus, a partition is Nash stable if, for no agent, there is no rational indi-
vidual deviation towards an already formed coalition in Π. Thus, formula 5.2
can be rewritten in:

∀ai ∈ N, @D ∈ AllDi(Π) : ∆I(ai, D,Π, HGD) ∧∆R(ai, D,Π, HGD) (5.3)

However, by assumption, ∀ai,Di := ∆I(ai, D,Π, HGD) ∧ ∆R(ai, D, Π,
HGD). Thus, the formula 5.3 can rewritten in:

∀ai ∈ N,Di(Π, HGD) = ∅ (5.4)

By definition, a partition Π is Nash stable if the deviation concept Di :=
∆I(ai, D,Π, HGD) ∧∆R(ai, D,Π, HGD) is empty for all agents.

Table 5.1 summarizes the deviation concepts Di corresponding to the
different canonical solution concepts, meaning that if all agents consider Di
then Π ∈ SC ⇐⇒ ∀ai ∈ N,Di(Π, HGD) = ∅.

Solution concept Deviation concept

Nash Stability ∆I ∧∆R

Individual Stability ∆I ∧∆R ∧∆−A
Contractual Nash Stability ∆I ∧∆R ∧∆−D
Individual Sontractual Stability ∆I ∧∆R ∧∆−A ∧∆−D
Strong Core Stability ∆R ∧∆A

Weak Core Stability ∆R ∧∆−A
Optimality ∆O

Pareto-Optimality ∆R ∧∆−PO

Table 5.1: Links between solution concepts and deviation concepts

Let us remark that those deviation concepts are the conjunction of two
kind of clauses:
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Clause on identity: The clause on identity defines if the desirable devi-
ations must be individual (∆I) or may also be collective (∆I ∨ ∆C).
The second case is implicit as it is a tautology. Neither it exists some
deviations that can satisfy ∆I ∧∆C . Moreover, it is interesting to re-
mark that no canonical solution concepts consider collective deviation
only. For instance, such a deviation concept represents friendly agents
that wants to deviate if and only if at least another agent deviates
with it.

Clauses on preferences: The clauses on preferences take into account the
other agents’ preferences. It is important to notice that the condition
of rationality is always considered in canonical solution concepts, as
well as several weaks form of conditions. Finally, the clause on prefer-
ences is always a conjunction of conditions.

Representing deviation concepts with conjunctive normal form lead to
another link betwwen canonical solution concepts and deviation concepts.
Indeed, canonical solution concepts have inclusion relationships, and those
relationships are the same between deviation concepts. For instance, ob-
viously, given a partition Π, if exists a deviation D ∈ AllDi(Π) such that
D � ∆I ∧∆R then D also satisfies ∆I ∧∆R ∧∆A. Thus, a partition which
does not satisfy individual stability does not also satisfy Nash stability. In
general, inclusion of a deviation concept D1

i in another concept D2
i – denoted

D1
i ⊆ D2

i – means that all deviations in D1
i are also in D2

i .

Definition 5.7 (Included deviation concept) A deviation concept D1
i

is included in another concept D2
i if, for all deviation games and all parti-

tions Π ∈ PN , D ∈ D1
i (Π, HGD) =⇒ D ∈ D2

i (Π, HGD).

Based on those definition, we can easly deduce some inclusion relation-
ships.

Proposition 5.2 Let D1
i and D2

i be two deviation concepts. Let A (resp.
B) be the set of deviation conditions which characterizes D1

i (resp. D2
i ). If

B ⊆ A, the deviation concept D1
i is included in D2

i .

Proof 5.2 Let us fix a deviation game HGD and a partition Π ∈ PN . Let
D1
i and D2

i be two deviation concepts. Let A (resp. B) be the set of deviation
conditions which characterizes D1

i (resp. D2
i ). Let us assume that B ⊆ A

and let us show that D1
i ⊆ D2

i necessarily holds. To this end, deviation
concepts D1

i and D2
i can be defined by:
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D1
i :=

∧
∆X∈A

∆X et D2
i :=

∧
∆X∈B

∆X

As B ⊆ A, we can rewrite D1
i in:

(
∧

∆X1
∈B

∆X1) ∧ (
∧

∆X2
∈A\B

∆X2)

Thus,

∀D ∈ AllDi(Π) : D � (
∧

∆X1
∈B

∆X1) ∧ (
∧

∆X2
∈A\B

∆X2) =⇒ D �
∧

∆X1
∈B

∆X1

Consequently,

∀D ∈ AllDi(Π), D ∈ D1
i (Π, HGD) =⇒ D ∈ D2

i (Π, HGD)

Thus, D1
i ⊆ D2

i necessarily holds.

To illustrate this property, let us consider the four following deviation
concepts:

1. D1
i := ∆I ∧∆R (Nash Stability)

2. D2
i := ∆I ∧∆R ∧∆A (Individual Stability)

3. D3
i := ∆I ∧∆R ∧∆A ∧∆D (Individual Contractual Stability)

4. D4
i := ∆R ∧∆A (Core Stability)

Here, we obtain the following inclusions: D3
i ⊆ D2

i ⊆ D1
i and D3

i ⊆ D4
i

which are the same than the classical one (NS ⊆ IS ⊆ ICS and CS ⊆
IS ⊆ ICS).

5.2 Modelling virtue-based solution concepts

Let us remark that, even in limiting ourself to 7 deviation conditions, many
combinations do not correspond to canonical solution concepts. Table 5.2
highlights those holes in the litterature. Columns represents the clauses on
identity and rows the clauses on preferences. Interrogation marks represent
the solution concept that were not studied in the litterature (to the best of
our knowledge).
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∆I ∆C ∆I ∨∆C

∆R NS ? ?

∆R ∧∆A IS ? CS

∆R ∧∆D CNS ? ?

∆R ∧∆A ∧∆D ICS ? ?

∆R ∧∆PO− ? ? PO

∆O ? ? O

∆A ? ? ?

∆D ? ? ?

∆A ∧∆D ? ? ?

Table 5.2: Unstudied solution concepts

There are two reasons for such holes. Firstly, all canonical solution
concepts consider the condition of rationality. However, it may make sense
to consider agents that seeks to maximize a social welfare even if it goes
against them, expressing a kind of altruism. Secondly, no canonical solution
concepts only consider collective deviations. However, it may make sense
to consider agents do not want to be the only responsible when making a
partition unstable.

In fact, during the coalition formation process, choosing to stay in a
coalition or to deviate may be lead by a virtue ethics, represented by a
cardinal value (see our previous technical reports [Voyer, 2014,Boissier et al.,
2015, Boissier et al., 2017]). We propose to show how to model such
cardinal value with a deviation concept, and how this models can
fill the holes in the Table 5.2. In a general way, we define for a value
v et an agent ai a deviation concept Dvi such all deviations D which satisfy
Dvi are deviation that promote the value v. A stable partition Π represents
a coalition structure such that no agent can deviate without betraying its
values.

In order to illustrate our proposal, we model in this report three values
based on their definition in the philosophy and sociology litterature: liberty,
altruism and hedonism. We propose here minimal deviation concepts in
the sense where any concepts that satisfy the same deviation conditions
also promote the value. Thus, for a same value, heterogeneous agents may
considered different deviation concepts.
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5.2.1 Liberty

Liberty was greatly studies in philosophical and political litterature. Let us
consider the four following definition (not exhaustive):

According to John Stuart Mill: [Mill, 1869] distinguishes liberty of thought
and liberty of act. Liberty of thought means that all men have the right
to form their own opinion and express them without any reserve. Sat-
isfying this liberty is a moral imperative. Liberty of act means that “
mens are free to act according to their opinions, namely free to apply
them to their own lives without being restricted both physically and
morally by their equals, since this freedom (s’exerce qu’à leurs seuls
risques et périls). ”

According to DRMC: “ Liberty consists of doing anything which does
not harm others: thus, the exercise of the natural rights of each man
has only those borders which assure other members of the society the
fruition of these same rights. These borders can be determined only
by the law. ” [DDHC, 1789] (Article IV).

According to Montesquieu: “ We must have constantly present in our
minds the difference between independence and liberty. Liberty is
a right of doing whatever the laws permit, and if a citizen could do
what they forbid he would no longer be possessed of liberty.” [de Mon-
tesquieu, 1867] (livre XI, Chapitre III)

According to Durkheim: “ True individual liberty does not consist in
the suppression of all laws, but is the product of a given law as this
egality cannot be found in the nature. ” [Durkheim, 1893] (Chapitre
II)

The same idea clearly appear in those definitions: freedom is restricted
by the harm we can cause to the others, commonly translated in freedom of
ones stops where freedom of others begins. In the context of hedonic games,
as we consider agent that can express all their preferences, liberty of thought
is satisfied. Thus, we need to characterize liberty of acts and an agent is
free to deviate since:

1. it does not penalize the agents it joins,

2. it does not penalize the agents it leaves.
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Both conditions are the weak conditions of acceptation and defection (∆−A
and ∆−D). Let us notice that, while Durkheim highlight individual liberty,
liberty apply to all agents: there is no condition on identity. Moreover, while
liberty cannot penalize the others, liberty may always penalize the deviating
agents: there is no condition of rationality. Thus, liberty is characterized
by the following deviation concept:

Di := ∆−A ∧∆−D

5.2.2 Altruism

Beyond debates on the existence or not of pure altruism as our actions
seems always motivated by something [Batson, 2014], atruism has been of-
ten studied in gift exchange games or dictator games [Akerlof, 1984, Hoff-
man et al., 1996,Eckel and Grossman, 1996,Bardsley, 2008] as some altruist
strategy may allow to reach better optimum than selfish strategies in some
games [Nongaillard and Mathieu, 2011]. Beside the question of motivations,
we consider the following definitions to characterize altruistic deviation con-
cepts:

According to Rand: “ The ethics of altruism has created the image of
the brute, as its answer, in order to make men accept two inhuman
tenets: (a) that any concern with one’s own interests is evil, regardless
of what these interests might be, and (b) that the brute’s activities are
in fact to one’s own interest (which altruism enjoins man to renounce
for the sake of his neighbors). ” [Rand, 1964]

“ Altruism is the doctrine which demands that man lives for others
and places others above self. ” [Rand, 2005]

According to Comte: “ Altruism is living for others. ” [Comte, 1966]

It is important to notice that both authors define altruism as the opposit
of selfishness. If selfishness is defined as only seeking to satisfy its own
preferences, then Nash stability characterizes it. Seeking to satisfy first the
preference of the others is, at the best of our knowledge, not characterized
by any canonical solution concepts. To define such a new solution concept,
we introduce a new deviation condition which aims at deviating towards a
coalition prefered by at least another agent.

Definition 5.8 (Condition of altruism) Let Π ∈ PN be a partition and
D ∈ AllDi(Π) be a deviation. D satisfies the condition of altruism – denoted
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∆alt) – if for Π′ = [D → Π],

∃aj ∈ N \ {ai} : Cj(Π
′) �j Cj(Π)

∧∀ak ∈ N \ {ai} : Ck(Π
′) �k Ck(Π)

The first part implies that the deviation must be profitable to at least
one agent, and the second part implies that no agent must be penalized
by the deviation. Moreover, altruism is a personal act (because it is not
altruistic to demand the other to be altruist) which is represented by the
condition of individuality ∆I . Finally, altruism may be either profitable for
the altruist, either be harmfull for him. This second case was called altruistic
suicide by [Durkheim, 1897]: an agent commits an altruistic suicide when
it deviates towards a less prefered coalition in order to reach a partition
more prefered by another agent. Thus, we characterize two different
altruistic deviation concepts:

Altruism: Di := ∆I ∧∆alt

Altruistic suicide: Di := ∆I ∧∆alt ∧ ¬∆R

5.2.3 Hedonism

While common sense views hedonism as a moral doctrine based on personnal
pleasure satisfaction, cyreneian and epicurian philosophies put the stress on
the avoidance of pain. Indeed, Epicure said “ excessive pleasure must be
avoided if it leads to a future pain ”. More recently, Mill wrote “ pleasure,
and freedom from pain, are the only things desirable as ends; and that all
desirable things are desirable either for the pleasure inherent in themselves,
or as means to the promotion of pleasure and the prevention of pain.” [Mill,
1889]. Thus, we ground our definition of hedonism on Nicolas de Chamfort’s
maxim “ Enjoy and make people enjoy, without harming neither you, nor
anyone, that is I think the whole morality. ” [Chamfort and Maximes,
1857,Onfray, 2011]

On the one hand, an hedonist agent must satisfy its own preferences.
On the other hand, the hedonist agent must satisfy the preference of the
others. Both aspects can be characterized by condition of rationality (∆R),
of acceptance (∆A) and defection (∆D). Thus, hedonism is characterized
by the following deviation concept:

Di := ∆R ∧∆A ∧∆D
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In terms of solution concept, this deviation concept is equivalent to a
contractual core stability which is unstudied in the litterature. As the core
stability, hedonism may be weaken by considering non-strict preferences.
This weak hedonism (characterized by Di := ∆R∧∆−A∧∆−D) means that the
agent ai will seek for satisfying its preferences without penalizing the other
agents.

5.3 Properties

Modelling the values at the previous section allows us to define new stable
solutions for an hedonic game. Assuming the agents want to promote the
same values, we define new solution concepts as follows:

Liberty Stability: Π ∈ PN is liberty-stable (denoted Π ∈ LS) iff:

∀ai ∈ N, ∀C ∈ Ni : ∃aj ∈ N \ {ai} : Cj(Π) �j Cj([C → Π])

Altruistic Stability: Π ∈ PN is altruisticly stable (denoted Π ∈ AS) iff:

∀ai ∈ N, @C ∈ Ni : ∃aj ∈ N \ {ai} : Cj([C → Π]) �j Cj(Π)

∧∀ak ∈ N \ {ai}, Ck([C → Π]) �j Cj(Π)

Hedonic Stability: Π ∈ PN is hedonicly stable (denoted Π ∈ HS) iff:

∀ai ∈ N, @C ∈ Ni : C �i Ci(Π) ∧ ∀aj ∈ C,C �j Cj(Π)

∧ ∀ak ∈ N \ C : (∃aj ∈ C,Ck(Π) = Cj(Π)), Ck(Π) \ C �k Ck(Π)

Table 5.3 highlight where those new concepts fill the holes of Table 5.2.
Let us now study some properties of those new solution concepts, namely
their non-emptyness and their inclusion relationships.

5.3.1 Non-emptyness

Liberty stability can be empty.

Proposition 5.3 It exists hedonic games such that LS = ∅.

Intuitively, liberty stability can be empty as the agents can always devi-
ate since they do not penalize the others.

Proof 5.3 (By example) Let HG be the following game:
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∆I ∆I ∨∆C

∆R Nash Stability ?

∆R ∧∆A Individual Stability Core Stability

∆R ∧∆D Contractual Nash Stability ?

∆R ∧∆A ∧∆D Individual Contractual Stability Hedonic Stability

∆R ∧∆PO− ? Pareto Optimality

∆O ? Optimality

∆alt Altruistic Stability ?

¬∆R ∧∆alt Altruistic Suicide ?

∆−A ∧∆−D ? Liberty Stability

Table 5.3: New solution concepts based on value-based deviation concepts

• N = {a1, a2}

• {a1, a2} �1 {a1}

• {a2} �2 {a1, a2}

There is two possible partitions: Π1 = {{a1}, {a2}} et Π2 = {{a1, a2}}.
Π1 its not liberty stable as a2 can deviate to D1 = {a1, a2} (it is a valid
deviation even if it is irrational). Π2 is not liberty stable as a1 can deviate
to D2 = {a1} (same remark than previously). Thus, HG does not have any
liberty stable partitions.

Hedonic stability is always non empty.

Proposition 5.4 Let HG = 〈N, (�i)ai∈N 〉 be a hedonic game. HS 6= ∅.

Proof 5.4 (By construction) We exhibit an algorithm to construct a non-
empty hedonicly stable partition. Let HGD = 〈N, (�i)ai∈N , (Di)ai∈N 〉 be a
deviation game. Let us fix a partition Π1 = {{a1}, . . . , {an}}.

Let us consider firstly the agent a1 and let us assume D ∈ D1(Π1, HGD) 6=
∅ (if not we skip the agent a1 to go to the agent a2). Let D∗ ∈ D1(Π1, HGD)
be such that ∀D ∈ D1(Π1, HGD), D∗ �1 D. Denote Π2 = [D∗ → Π1]. By
definition of D∗, we have D1(Π2, HGD) = ∅.

Let us consider now the agent a2 and the partition Π2. By construction
of Π2, it exists D ∈ D2(Π2, HGD). We have then a1 /∈ D. Agent a2 can con-
sider deviation D∗2 ∈ D2(Π2, HGD) such that ∀D ∈ D2(Π2, HGD), D∗2 �2

D. Denote Π3 = [D∗2 → Π2].
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By repeating the previous step on all agents of D∗i ∈ Di(Πi, HGD),
we obtain a partition Πn such that ∀ai ∈ N,Di(Πn, HGD) = ∅, which is
hedonicly stable.

Altruistic stability can be empty.

Proposition 5.5 It exists hedonic games such that AS = ∅.

Proof 5.5 (By example) Let us consider the example of Proof 5.3. Π1

is not altruisticly stable as to satisfy a1, a2 must consider an irrational
deviation D1 = {a1, a2}. Π2 = {{a1, a2}} is not altruisticly stable for the
same reason. Thus, this game has not altruisticly stable partition.

Interestingly, this example highlights situations where each agent gives
the priority to the other, leading to a deadlock.

5.3.2 Inclusion relationships

Based on Property 5.2 we can deduce inclusion relationships between our
new concepts, summarized in Figure 5.1. Let us denote by DSC the deviation
concept associated to the solution concept SC. For instance, DLS := ∆−A ∧
∆−D.

O

NS

CS

CNS

IS

PO

HS

LS

ICS

AS

Figure 5.1: Relations d’inclusions entre les concepts de solution

Let us consider liberty stability and hedonic stability.

Proposition 5.6 LS ⊆ HS.

Proof 5.6 Let us consider DLS := ∆−A ∧∆−D and DHS := ∆R ∧∆A ∧∆D.
By definition of weak deviation conditions, any deviation D which satisfies
∆A (resp. ∆D) also satisfies ∆−A (resp ∆−D). By Property 5.2, we have
DHS ⊆ DLS. Thus, we have LS ⊆ HS.
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Considérons maintenant le cas de la stabilité hédonique et de la stabilité
individuelle contractuelle.

Proposition 5.7 HS ⊆ ICS.

Proof 5.7 Let us consider DHS := ∆R ∧ ∆A ∧ ∆D and DICS := ∆I ∧
∆R ∧ ∆A ∧ ∆D. By Property 5.2, we have DICS ⊆ DHS. Thus, we have
HS ⊆ ICS.

As LS ⊆ HS, we also have LS ⊆ ICS. In the same way, hedonic
stability is included in individual stability, Nash stability and core stability
(the proof is very similar to the previous one). Lastly, a Pareto-optimal
partition is always hedonicly stable.

Proposition 5.8 Hedonic stability satisfies: NS ⊆ IS ⊆ HS, CS ⊆ IS ⊆
HS and PO ⊆ HS.

We give the proof for PO ⊆ HS.

Proof 5.8 A hedonicly stable partition is not necessarily Pareto-optimal as
Pareto-optimality considers a sequence of deviation. It is not the case for
the hedonic stability. Now, let us show that PO ⊆ HS. Let Π ∈ PO
be a partition and let us assume that Π /∈ HS. By definition of hedonic
stability, it exists a deviation D such that, for all Π′ the partition which
results of [D → Π], we have ∀ai ∈ N,Ci(Π′) ⊂ Ci(Π). It is in contradiction
with the definition of Pareto-optimality. Thus, it contradicts our assumption
Π ∈ PO.

Liberty stability is not included in individual stability (and therefore is
not included in core stability and Nash stability).

Proposition 5.9 IS 6⊆ LS.

Proof 5.9 (By example) Let HG1 be a hedonic game such that:

• N = {a1, a2, a3}

• {a1, a3} �1 {a1, a2} �1 {a1}

• {a1, a2} �2 {a2}

• {a1, a3} �3 {a3}
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Let us consider the partition Π = {{a1, a2}, {a3}}. Π is not individually
stable as a1 can deviate to D = {a1, a3} which satisfies ∆I , ∆R and ∆A.
However, Π is liberty stable as there is no deviation which satisfies ∆D.
Thus, Π ∈ IS and Π /∈ LS.

Let HG2 be a hedonic game such that:

• N = {a1, a2, a3}

• {a1, a2, a3} �1 {a1}

• {a2, a3} �2 {a1, a2, a3} �2 {a2}

• {a2, a3} �3 {a1, a2, a3} �3 {a3}

Let us consider the partition Π = {{a1, a2, a3}}. Π is individually stable
but is not liberty stable as a1 can deviate to D = {a1}. Thus, Π /∈ IS and
Π ∈ LS.

Finally, let us study the case of altruism.

Proposition 5.10 LS ⊆ AS.

Proof 5.10 Let us recall that ∆alt implies to satisfy ∆−A and ∆−D. Thus, we
can write Dalt := ∆I ∧∆alt ∧∆−A ∧∆−D. Consequently, by Propertyi 5.2, we
have DAS ⊆ DLS. Thus, we have LS ⊆ AS.

Let us remark that, as altruism allows (or oblige in the case of altruis-
tic suicide) irrational deviation, there is no inclusion relationships between
altruistic stability and all canonical solution concepts, as well between al-
truistic stability and hedonic stability.
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Chapter 6

General conclusion

In this report, we study how to build ethical collective of agents, and how
to build these collective in an ethical way.

1. We proposed an operational model of ethical judgment that produces
beliefs on moral and ethical images of other agents. Then, we use
those image beliefs to build trust beliefs that can be used to make
cooperation based on moral or ethics. Firstly, ethical and moral trust
can enrich the description of the moral rules or values. Secondly, moral
rules or values can influence how trust is built, and finally jugement
can allow to trust agents with a close ethics only, and thus to build
ethical collectives.

2. We proposed several models of hedonic games, extending classical
approaches to individual solution concepts. Those models ground a
virtue ethics for cooperative games, allowing agents to express hetero-
geneous point-of-view on how coalitions must be formed. We extended
this approach in a decomposition of atomic properties to define new
solution concepts which can easily represent human values.

Obviously, we dealt with both problematics in an independant way. Be-
side the need to unify deviation concepts with HG2P in order to have a more
general expression of virtue ethics, the main perspective to this work is to
merge both approaches in order to built ethically ethical collectives.
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